Exhibit 5 Subsurface Investigation

August 2022 Oklahoma Dam Relicensing

Grand Lake Subsurface Investigation Field Report

Prepared for Grand River Dam Authority

August 2022 Oklahoma Dam Relicensing

Grand Lake Subsurface Investigation Field Report

Prepared for

Grand River Dam Authority P.O. Box 409 Vinita, Oklahoma 74301

Prepared by

Anchor QEA, LLC 660 West Washington Avenue Suite 302 Madison, Wisconsin 53703

TABLE OF CONTENTS

1	Introduction							
2	Stud	Study Area6						
3	Equipment							
	3.1	Sub-Bottom Profiler	8					
	3.2	Vibracore	9					
4	Resu	lts	11					
	4.1	Sub-Bottom Survey Outputs	11					
	4.2	Vibracore Analysis	13					
5	Discu	ıssion	18					
6	Refe	rences	21					
	A.1	Transect 1	23					
	A.2	Transect 2	23					
	A.3	Transect 3	24					
	A.4	Transect 4	24					
	A.5	Transect 5	25					
	A.6	Transect 6	25					
	A.7	Transect 7	26					
	8.A	Transect 8	26					
	A.9	Transect 9	27					
TAE	BLES							
Tabl	e 1	EdgeTech SB-424 Specifications	8					
FIG	URES							
Figu	re 1	Locations of SBP Transects and Sediment Cores Collected by GRDA	7					
Figu	re 2	EdgeTech 424 Sub-Bottom Profiler Towfish	8					
Figu	re 3	Vibracore System Used during February 2022 Sample Collection	10					
Figu	re 4	Example SBP Waterfalls showing Layer Transitions and "Multiples"	12					
Figu	re 5	OARS Interpretation of SBP Survey Results at Stations 4 through 9	13					

Figure 6	Locations of Sediment Cores Collected by GRDA	14
Figure 7	Maximum Vibracore Sample Penetration on Neosho River	15
Figure 8	Locations of Sediment Cores Collected for Cesium Analysis	16
Figure 9	Image of Core 5.1-2 during Processing	17
Figure 10	Comparisons of Relative Cesium Activity within the USGS Core Samples	19
Figure 11	Comparisons of Relative Cesium Activity Between USGS Core Sample GL-1 and GRDA Samples 5.1-1 and 5.2-1	20

APPENDICES

Appendix I Waterfall Images from Sub-Bottom Survey

Appendix II Grain Size Analysis

Appendix III Cesium-137 Analysis Results

Appendix IV Field Notes

1 Introduction

GRDA performed an investigation of sediment deposition on the Neosho River at multiple locations to estimate bottom sediment layer thicknesses. The goal of the survey was to determine the volume of sediment deposited in these areas since the construction of the Pensacola Dam. Historical records indicate that a delta feature had accumulated in this reach of the system, and GRDA used a subbottom profiler (SBP) to assess deposition thicknesses.

Two methods were used to investigate the sediment accumulation. The first was an SBP survey, and the second was vibracoring for sediment samples. The SBP survey covered nine transects of the Neosho River and was completed in January 2022. The vibracore sampling was completed in February 2022 and included multiple samples at each SBP transect.

An SBP uses sonar pulses to determine depth of a water body. There is an emitter and a receiver on the SBP head unit, and by measuring the amount of time necessary for the emitted pulse to reach an object and return to the receiver, the SBP is able to measure the distance the pulse traveled. This allows the SBP to measure bathymetry, but the pulse is also powerful enough to penetrate a soft sediment bed, such as clay, silt, and sand before reaching a harder layer. Using the same principles, the SBP can then estimate the thickness of a soft sediment layer above gravel or bedrock.

Vibracoring uses a motorized head unit to press core tubes into the stream- or lakebed. The combined weight and vibration of the head unit allows for deeper penetration than simply pressing the core tube into the bed or relying on gravity coring methods. Once collected, grain size analyses and other testing can be used to determine sediment properties as a function of depth in the sediment layers. The cores were used for two purposes: one was to confirm SBP survey information and evaluate sediment composition; the other was an attempt to determine approximate dates of deposition through the use of cesium-137 (Cs-137) analysis.

Cs-137 is an isotope that does not occur in nature. It is created by nuclear fission, which humans began developing in the 1940s. As nuclear weapons testing accelerated, atmospheric Cs-137 increased until a 1963 nuclear test ban treaty. The Cs-137 levels then dropped significantly. Atmospheric Cs-137 concentrations are well-correlated with Cs-137 concentrations in soil, showing the same pattern of increase from the 1940s to 1963, then a marked decrease.

Measurement of relative Cs-137 activity in sediment allows researchers to estimate deposition dates for sediment layers. In areas of continual deposition, Cs-137 analysis will find a pattern of increasing Cs-137 activity moving deeper in the column until reaching the 1963 layer. Below that layer, concentrations drop to zero by the 1940s. In disturbed areas or places with non-continuous deposition, there is usually no clear Cs-137 peak. The combination of SBP, vibracore samples, and Cs-137 provides insight into the volume, rate, and timeline of sediment deposition in the Neosho River.

2 Study Area

The study area for this survey was the Neosho River between river mile (RM) 125.56 approximately one mile downstream of Connors Bridge and RM 103.72 approximately two miles below the Elk River confluence. The survey team collected SBP transects at 9 locations to determine sediment layer thicknesses (Figure 1). At least two vibracore samples were collected at each transect. In addition, two additional samples at RM 113.2 for Cs-137 assessment to replicate an earlier USGS (Juracek and Becker 2009) effort.

Figure 1 **Locations of SBP Transects and Sediment Cores Collected by GRDA** 1.1-1 2.1-1 1.1-2 2.1-2 RM 125.56 RM 124.20 3.1-2 RM 119.61 4.1-1 4.2-1 RM 115.81 GL1-1 GL1-2 RM 113.2 5.1-1; 5.1-2 5.2-1; 5.2-2 RM 112.34 6.1-1 6.2-1; 6.2-2 RM 109.65 7.1-1 7.2-1 RM 106.93 Legend Sediment Core Locations 8.1-1; 8.1-2 **Sub-Bottom Transects** 9.1-1 8.2-1 9.1-2 RM 105.35 0.5 1 1.5 2 mi RM 103.72 Map created by BJT, Anchor QEA on 03DEC2021 Horizontal Datum is EPSG 2267: NAD83, Oklahoma North (US ft) Vertical Datum is NAVD88 (US ft)

3 Equipment

3.1 Sub-Bottom Profiler

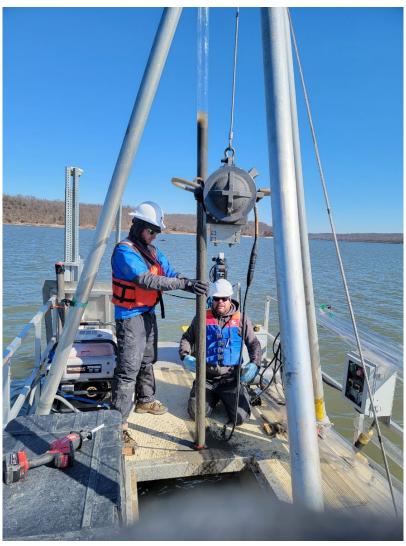
The survey team used a 19-ft vessel to tow an EdgeTech SB-424 towfish (Figure 2). The towfish was pulled across each of the nine transects on the Neosho River to collect SBP data. The system was processed onboard using the EdgeTech 3100-P portable sub-bottom topside electronics and Discover software that displayed and stored data. The reported SB-424 specifications are shown in Table 1.

Figure 2
EdgeTech 424 Sub-Bottom Profiler Towfish

Note: The EdgeTech SB-424 is a tow vehicle that was pulled across the measured transects. The topside 3100-P portable sub-bottom profiling system with Discover software is not shown in this image.

Table 1
EdgeTech SB-424 Specifications

EdgeTech SB-424 Characteristics	Text		
Frequency Range	4-24 kHz		
Pulses (user selected)	4-24 kHz, 4-20 kHz, 4-16 kHz		
	4 cm / 4-24 kHz		
Vertical Resolution	6 cm / 4-20 kHz		
	8 cm / 4-16 kHz		
Departmention (trunical)	In coarse calcareous sand – 2 m		
Penetration (typical)	In clay – 40 m		
	16° / 4-24 kHz		
Beam Width (depends on center frequency)	19° / 2-20 kHz		
	23° / 2-16 kHz		
	L – 77		
Size (cm)	W – 50		
	H – 34		

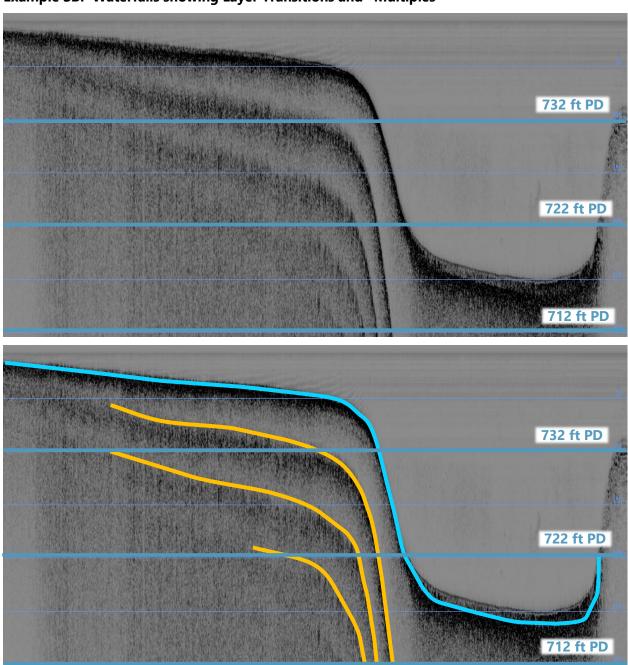

EdgeTech SB-424 Characteristics	Text		
Weight (kg)	45		
Optimum Tow height	3-5 m above bed		
Tow Speed	3-4 knots optimal, 7 knots maximum safe		

The data was geolocated using a Differential GPS (DPGS) antenna. Track lines were set to follow cross sections aligned with the HEC-RAS computer model of the river system as shown in Figure 1.

3.2 Vibracore

The vibracore used for this effort was a Rossfelder P-3 system. The head clamped onto 16-ft clear ceramic tubes and was lowered to the bed with an electric winch from a vessel-mounted tripod system (Figure 3). Location data was collected with an RTK-GPS unit onboard the sampling boat.

Figure 3
Vibracore System Used during February 2022 Sample Collection



4 Results

4.1 Sub-Bottom Survey Outputs

The SBP will produce a visual output referred to as a "waterfall" that indicates the distances to different objects. The most powerful return signal is often the lakebed or streambed, and subsequent layers are somewhat weaker signals that are still visible in the data. Another type of signal is referred to as a "multiple," which is produced by pulses bouncing between the SBP sonar head and the bed, several times, resulting in a series of nearly parallel lines. An example image collected during the SBP survey at RM 112.34 showing this is provided in Figure 4. Full images are included in Appendix I.

Figure 4
Example SBP Waterfalls showing Layer Transitions and "Multiples"

Notes: Waterfall images taken from SBP survey at RM 112.34 (approximately 1.5 miles upstream of Council Hollow)
Lower image is identical to upper, but locations of layer transitions and multiples are highlighted.

Teal line is the layer transition between soft and hard sediments

Orange lines are "multiples" or secondary reflections

The waterfalls produced during the Neosho River SBP survey showed layer transitions at approximately 2-3 ft below the bed surface. This indicated a thin layer of soft material over firmer sediments throughout much of the survey area. The interpretation was confirmed by an SBP expert, and the representative stated that a majority of the areas surveyed were not characterized by soft sediment beds (Figure 5).

Interpretation of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 4 through 9

Image: Sample of SBP Survey Results at Stations 8

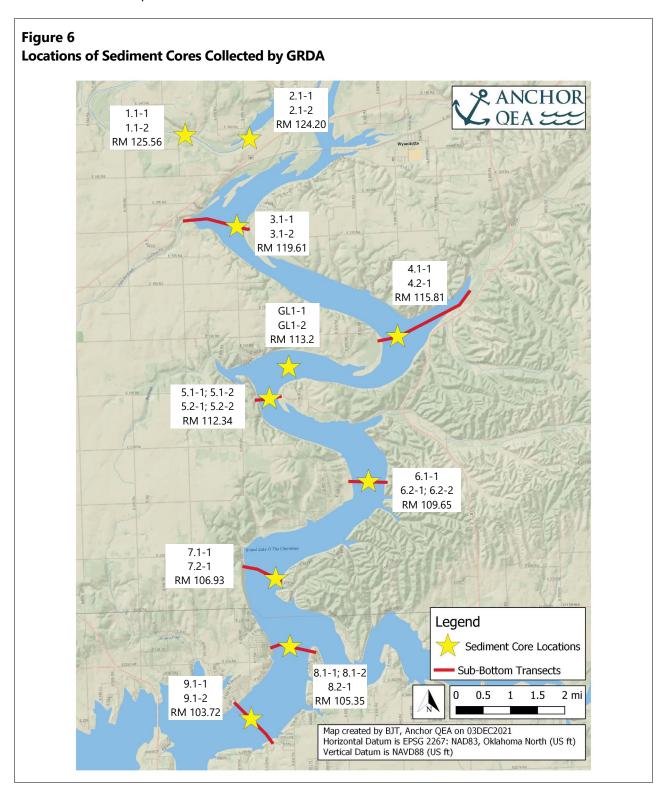
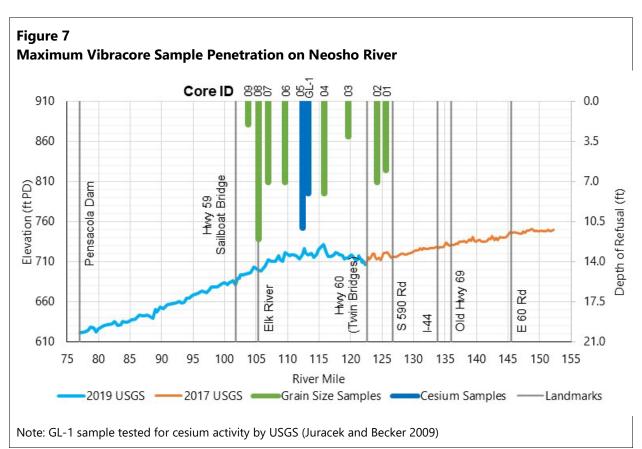
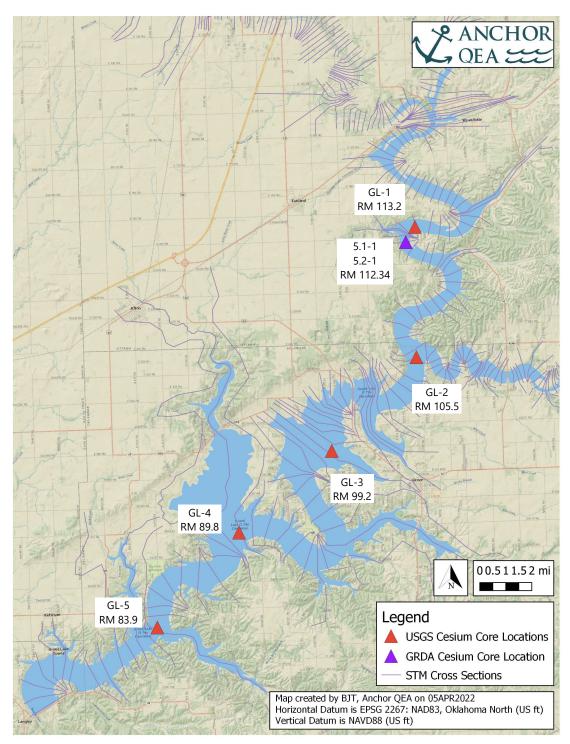

Image: Sample of SBP Survey Results at Sta

Figure 5 shows the navigation lines from the field SBP survey. Where a mixture of soft and hard beds were noted by the SBP expert (for example at transect 9, bottom right), pink outlines were drawn. Red outlines indicate soft bottom materials (transect 4, top center). Areas not colored were interpreted to consist of hard bottom sediments.


4.2 Vibracore Analysis

The vibracore pushed core tubes into the riverbed at the locations shown in Figure 6 using 16-foot coring tubes. These were chosen to align with the SBP survey discussed in Section 4.1 as a means of

confirming interpretation of the results. SBP survey transects are shown in red with their relationship to the vibracore sample locations.



The vibracoring efforts produced 24 core samples for analysis. The cores were pushed to refusal, which ranged from 1.5 to 11 feet in the reach above the Elk River (Figure 7). In the lower reservoir, one core penetrated approximately 12 feet of sediment before refusal. Two cores over 10 feet in length taken in the delta feature (RM 112.34) were evaluated for Cesium-137 (Cs-137) activity. Cores shorter than 10 feet or taken from the lower reservoir were analyzed only for grain size distribution (see Section 3.3). Figure 7 shows the maximum vibracore penetration depths at each site shown in Figure 6.

The USGS (Juracek and Becker 2009) analyzed sediment Cs-137 levels to determine the approximate age of sediment in various locations within Grand Lake. The 2008 study collected samples from five sites, with one located in the region of the delta feature, one near the confluence with the Elk River, and three others located further downstream in the reservoir (Figure 8). Where USGS data showed a clear, defined Cs-137 peak, the findings were considered settled.

Figure 8 Locations of Sediment Cores Collected for Cesium Analysis

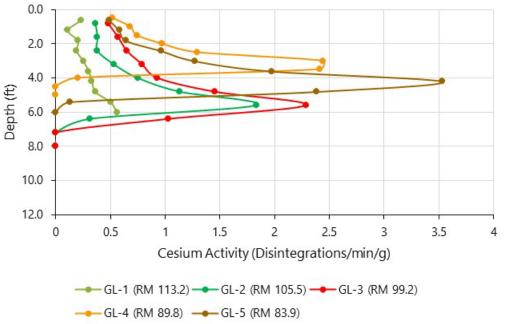
Note: Locations of USGS cores taken from Juracek and Becker (2009)

A major goal of sampling was to collect a significantly deeper sample near USGS site GL-1. The USGS sample was approximately 6 ft, and it was decided that a vibracore sample of approximately 10 ft would be sufficient to trigger re-evaluation and Cs-137 analysis. Shorter cores would not likely produce different results from the USGS (2009) study. Cores lower in the basin were not analyzed as the USGS dataset was sufficiently robust and were not of interest for delta feature analysis. The cores that met this criteria were 5.1-1 and 5.2-1 as shown in Figure 8.

Sediment cores were subdivided by cutting along the length of the core tube using an electric shear. Total recovered length was measured and recorded (Figure 9). Plastic spoons were used to mark the divisions between samples. Cores sent for grain size analyses were divided into 1-ft segments, and Cs-137 samples into 4-cm increments for laboratory assessment by Teledyne Brown Engineering. The spoons were then used to scoop samples into a clean container while avoiding the outer 1.5 cm of the core sample to prevent mixing of material smeared along the sample tube itself. Once used, the spoons were discarded to avoid contamination of any other samples. Sample containers were labeled, sealed, and packaged for transport. Because these were for grain size and Cs-137 analysis, there was no need for preservatives or cooling.

Grain size results showed primarily silts and clays throughout each core. Full results are presented in Appendix II. Cs-137 analysis showed no obvious trend in the activity levels. See Appendix III for the laboratory report.

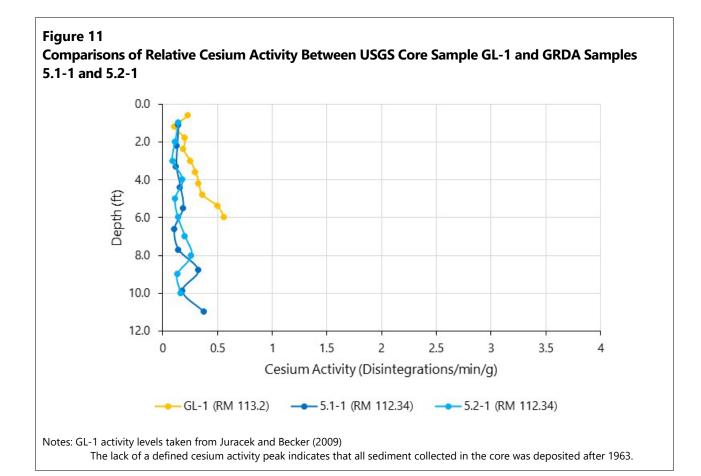
5 Discussion


SBP results indicate a primarily firm bed with limited deposition of softer silts and clays. This suggests relatively limited deposition of soft cohesive material. However, these results are contingent upon field sampling to confirm the readings.

The vibracore samples show a thicker sediment deposit which suggests the SBP was not reliably capturing sediment layer thicknesses. Most likely, the penetration of the SBP signal was limited by a layer of biotic activity within the surface of the sediment; several core samples had air bubbles in the top few feet produced by decomposition or other biological activity. This produces readings indicating a softer, air-filled layer above the firmer silt and clay sediment that would register as a separate layer during SBP surveying (Aqua Survey 2004, Science Applications International 2001). As a result, further analyses relied on vibracore sampling rather than SBP results.

Vibracore sampling showed thicker layers of soft sediment deposition, and also provided opportunity to evaluate Cs-137 trends measured by a USGS study (Juracek and Becker 2009).

USGS analysis showed that Cs-137 peaks were located approximately 3 to 6 feet below the bed surface (Figure 10). Those peaks represent sediment that was deposited in approximately 1963, indicating that just 3 to 6 feet of sediment had deposited since 1963 at sites GL-2, -3, -4, and -5 (Figure 8).


Notes: The peak cesium activity indicates the soil layer associated with deposition in approximately 1963. All material above that layer is assumed to have deposited since the nuclear testing ban.

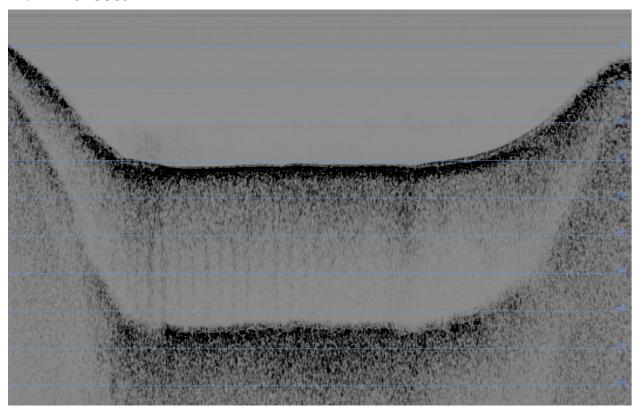
Source: Figure adapted from Juracek and Becker (2009).

The sample in the delta feature (GL-1) showed no spike in Cs-137. Juracek and Becker (2009) concluded the sediment they collected was all deposited post-1963. The USGS interpreted this to indicate that the area was not continually depositional but washes away due to wave action or large flow events before new sediment redeposits. This follows typical reservoir delta feature evolution, with surface sediments at the top of the delta feature washing downstream and extending the delta feature further into the reservoir rather than increasing the top elevation.

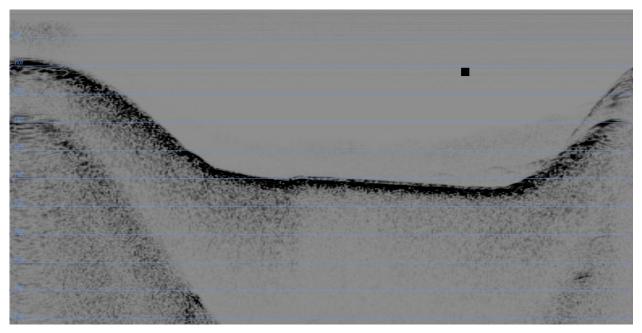
During GRDA's vibracore sampling, they repeated the USGS efforts to obtain longer (deeper) cores and see if a longer sample would capture a characteristic Cs-137 spike that denotes a 1963 sediment layer. GRDA collected approximately 11-foot cores near site GL-1 (cores 5.1-1 and 5.2-1) and processed them for Cs-137 analysis. The location of cores 5.1-1 and 5.2-1 are displayed in Figure 8.

GRDA sent 10 samples at equally spaced intervals within each core for Cs-137 evaluation. The results show a similar pattern to those of the USGS study, with no apparent Cs-137 peak (Figure 11).

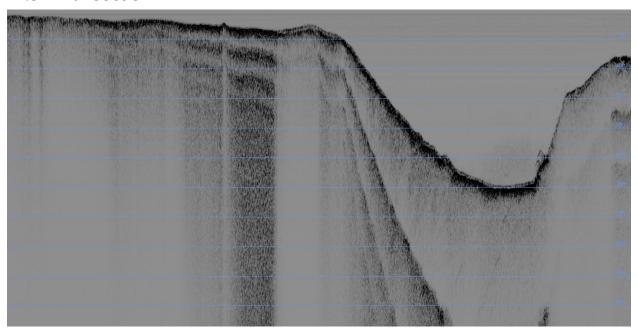
This further suggests that deposition in the top 10 feet of the soil column is all post-1963 and that the site is not continuously depositional, instead indicating regular mixing of the materials at the top of the delta feature. These results agree with the USGS (Juracek and Becker 2009) findings that this location sees regular disturbance and is not continually depositional.

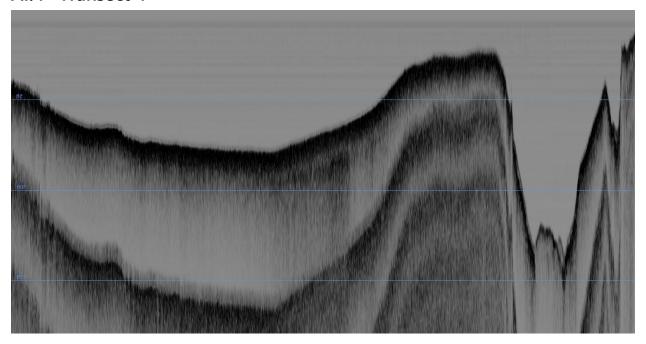

6 References

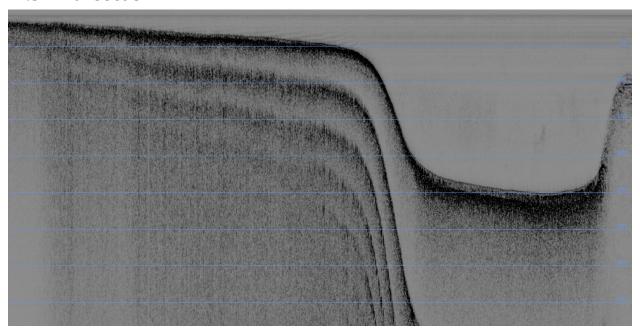
- Aqua Survey, 2004. Technical Report Environmental Dredging and Sediment Decontamination


 Technology Demonstration Pilot Study Lower Passaic River Restoration Project Magnetometer
 and Sub-Bottom Profiler Debris Survey. December 3, 2004.
- Juracek, K.E. and M.F. Becker, 2009. Occurrence and Trends of Selected Chemical Constituents in Bottom Sediment, Grand Lake O' the Cherokees, Northeast Oklahoma, 1940–2008. U.S. Geological Survey Scientific Investigations Report 2009–5258, 28 p.
- Science Applications International Corporation, 2001. *Results of the March 2001 Sub-Bottom Profiling and Sediment Profile Imaging of the Outer Gloucester Harbor*. SAIC Report 541. June 2001.

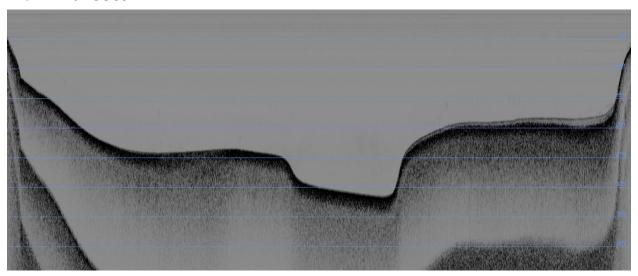
Appendix I Waterfall Images from Sub-Bottom Survey

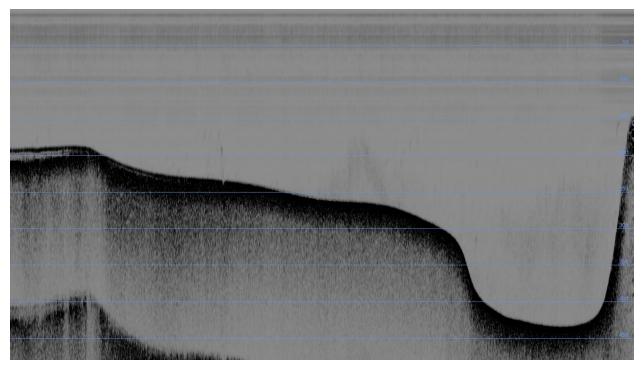

Al.1 Transect 1

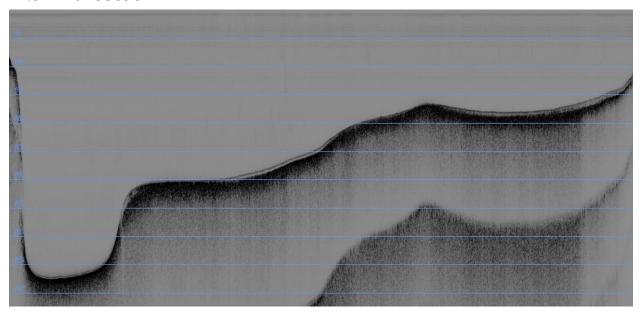

AI.2 Transect 2


AI.3 Transect 3

Al.4 Transect 4


AI.5 Transect 5


Al.6 Transect 6


AI.7 Transect 7

AI.8 Transect 8

Al.9 Transect 9

Appendix II Grain Size Analysis

Anchor QEA, LLC 30 W Mifflin St, Ste 801 Madison, WI 53713

 Date
 4/18/2022

 Acct #
 559106

 Report #
 1228

Comments

Soil Texture Analysis

Sample Number	Sample Name		SAND	SILT	Clay	Soil	
	Core	Depth (in)	%	%	%	Туре	
1		0-12	9.0	57.0	34	Silty Clay Loam	
2	04.4.4	12 to 24	9.0	47.0	44	Silty Clay	
3	01.1-1	24-36	17.0	41.0	42	Silty Clay.	
4		36-48	17.0	39.0	44	Clay	
5		0-12	5.0	59.0	36	Silty Clay Loam	
6		12 to 24	9.0	37.0	54	Clay	
7	04.4.0	24-36	9.0	49.0	42	Silty Clay	
8	01.1-2	36-48	17.0	43.0	40	Silty Clay	
9		48-60	8.0	44.0	48	Silty Clay	
10		60-63	2.0	44.0	54	Silty Clay	
11		0-12	16.0	52.0	32	Silty Clay Loam	
12		12 to 24	12.0	50.0	38	Silty Clay Loam	
13	00.4.4	24 to 36	14.0	42.0	44	Silty Clay	
14	02.1-1	36 - 48	5.0	50.0	42	Silty Clay	
15		48 - 60	14.0	42.0	44	Silty Clay	
16		60 - 63	20.0	42.0	38	Silty Clay Loam	
17		0 - 12	14.0	48.0	38	Silty Clay Loam	
18		12 to 24	16.0	42.0	42	Silty Clay	
19	00.4.0	24 to 36	18.0	42.0	40	Silty Clay	
20	02.1-2	36 - 48	14.0	44.0	42	Silty Clay	
21		48 - 60	32.0	30.0	38	Silty Clay Loam	
22		60 - 72	18.0	44.0	38	Silty Clay Loam	
23		0 - 12	30.0	34.0	36	Silty Clay Loam	
24	03.1-1	12 to 24	14.0	48.0	38	Silty Clay Loam	
25	03.1-1	12 to 24	18.0	42.0	40	Silty Clay	
26		24 - 33	30.0	40.0	30	Clay Loam	
27	03.1-2	0 - 12	14.0	52.0	34	Silty Clay Loam	
28	00.1 Z	24 - 36	16.0	44.0	40	Silty Clay	
29		0 - 12	12.0	52.0	36	Silty Clay Loam	
30	04.1-1	12 to 24	8.0	56.0	36	Silty Clay Loam	
31		24 - 36	6.0	56.0	38	Silty Clay Loam	
32		36 - 43	6.0	50.0	44	Silty Clay Loam	
33		0 - 12	26.0	54.0	20	Silt Loam	

http://uwlab.soils.wisc.edu

Anchor QEA, LLC 30 W Mifflin St, Ste 801 Madison, WI 53713

 Date
 4/18/2022

 Acct #
 559106

 Report #
 1228

Comments

Soil Texture Analysis

Sample Number	Sample Name		SAND	SILT	Clay	Soil
	Core	Depth (in)	%	%	%	Туре
34		12 to 24	16.0	56.0	28	Silty Clay Loam
35		24 - 36	16.0	52.0	32	Silty Clay Loam
36	04.2-1	36 - 48	12.0	54.0	34	Silty Clay Loam
37	04.2-1	48 - 60	12.0	54.0	34	Silty Clay Loam
38		60 - 72	14.0	50.0	36	Silty Clay Loam
39		72 - 84	8.0	54.0	38	Silty Clay Loam
40		84 - 92	8.0	52.0	40	Silty Clay
41		0 - 12	8.0	58.0	34	Silty Clay Loam
42		12 to 24	8.0	56.0	36	Silty Clay Loam
43		24 - 36	12.0	54.0	34	Silty Clay Loam
44		36 - 48	8.0	58.0	34	Silty Clay Loam
45	05.1-2	48 - 60	9.0	52.0	39	Silty Clay Loam
46		60 - 72	9.0	50.0	41	Silty Clay
47		72 - 84	7.0	50.0	43	Silty Clay
48		84 - 96	13.0	48.0	39	Silty Clay Loam
49		96 - 102	18.8	48.0	33	Silty Clay Loam
50		0 - 12	12.8	50.0	37	Silty Clay Loam
51		12 to 24	28.8	44.0	27	Clay Loam
52		24 - 36	16.8	52.0	31	Silty Clay Loam
53		36 - 48	18.8	50.0	31	Silty Clay Loam
54	05.2-2	48 - 60	10.8	48.0	41	Silty Clay
55		60 - 72	8.8	52.0	39	Silty Clay Loam
56		72 - 84	10.8	56.0	33	Silty Clay Loam
57		84 - 96	12.8	50.0	37	Silty Clay Loam
58		96 - 102	10.8	54.0	35	Silty Clay Loam
59	06.1-1	0 - 12	10.8	52.0	37	Silty Clay Loam
60		0 - 12	14.8	52.0	33	Silty Clay Loam
61		12 to 24	8.8	54.0	37	Silty Clay Loam
62	06.2-1	24 - 36	6.8	56.0	37	Silty Clay Loam
63	00.2-1	36 - 48	4.8	58.0	37	Silty Clay Loam
64		48 - 60	4.8	56.0	39	Silty Clay Loam
65		60 - 72	4.8	52.0	43	Silty Clay Loam
66		0 - 12	6.8	58.0	35	Silty Clay Loam
67		12 to 24	4.8	58.0	37	Silty Clay Loam
68		24 - 36	8.8	56.0	35	Silty Clay Loam
69	06.2-2	36 - 48	6.8	58.0	35	Silty Clay Loam
70		48 - 60	4.8	56.0	39	Silty Clay Loam
71		60 - 72	2.8	58.0	39	Silty Clay Loam

Anchor QEA, LLC 30 W Mifflin St, Ste 801 Madison, WI 53713

Date 4/18/2022 Acct # 559106 Report # 1228

Comments

Soil Texture Analysis

Sample Number	Sampl	le Name	SAND	SILT	Clay	Soil	
,	Core	Depth (in)	%	%	%	Туре	
72		72 - 81	0.8	58.0	41	Silty Clay	
73		0 - 12	0.8	56.0	43	Silty Clay	
74		12 to 24	0.8	60.0	39	Silty Clay Loam	
75	07.1-1	24 - 36	2.8	58.0	39	Silty Clay Loam	
76		36 - 48	2.8	54.0	43	Silty Clay	
77		48 - 53	18.8	42.0	39	Silty Clay Loam	
78		0 - 12	0.8	60.0	39	Silty Clay Loam	
79		12 to 24	0.8	58.0	41	Silty Clay	
80		24 - 36	0.8	56.0	43	Silty Clay	
81	07.2-1	36 - 48	6.8	50.0	43	Silty Clay	
82		48 - 60	6.8	48.0	45	Silty Clay	
83		60 -72	2.8	46.0	51	Silty Clay	
84		72 - 79	2.8	44.0	53	Silty Clay	
85	00.4.4	0 - 12	4.8	52.0	43	Silty Clay	
86	08.1-1	81 - 93	2.8	40.0	57	Silty Clay	
87	08.1-2	0 - 12	10.8	52.0	37	Silty Clay Loam	
88	08.1-2	117 - 129	2.8	34.0	63	Clay Loam	
89	00.0.4	0 - 12	4.8	44.0	51	Silty Clay	
90	08.2-1	12 to 24	6.8	42.0	51	Silty Clay	
91	00.4.4	0 - 6	12.8	48.0	39	Silty Clay Loam	
92	09.1-1	6 to 18	40.8	40.0	19	Silty Clay	
93	09.1-2	0 - 12	42.8	36.0	21	Silty Clay	
94		0 - 12	20.8	50.0	29	Clay Loam	
95		12 to 24	10.8	54.0	35	Silty Clay Loam	
96		24 - 36	8.8	54.0	37	Silty Clay Loam	
97	GL1-1	36-48	7.0	52.0	41	Silty Clay	
98		48-60	9.0	50.0	41	Silty Clay	
99		60-72	8.0	52.0	40	Silty Clay	
100		72-84	4.0	50.0	46	Silty Clay	
101		0-12	16.0	52.0	32	Silty Clay Loam	
102		12 to 24	8.0	56.0	36	Silty Clay Loam	
103		24-36	10.0	56.0	34	Silty Clay Loam	
104	GL1-2	36-48	8.0	52.0	40	Silty Clay	
105	GL 1-2	48-60	10.0	50.0	40	Silty Clay	
106		60-72	4.0	48.0	48	Silty Clay	
107		72-84	6.0	42.0	52	Silty Clay	
108		84-90	6.0	38.0	56	Clay	

Appendix III Cesium-137 Analysis Results

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133 865-690-6819

Work Order #: L95403

ANCHOR QEA

March 23, 2022

This report shall not be reproduced or distributed except in its entirety.

Table of Contents

Case Narrative	3
Analytical Results	5
QC Results	11
Sample Receipt	14
Internal Chain of Custody	18
Gamma Spectroscopy	26
Background	27
Initial Calibration	37
Daily Source and Background Checks	148
Samples and QC Raw Data	188
Prep and Run Log	322
Balance and Pipette Check	325
Gamma Standards	328
Percent Moisture	331
End of Document	332

Brent Teske 1201 3rd Ave, Suite 2600 Seattle WA 98101

Case Narrative - L95403 AN003-3EREGBTESKE-22

03/23/2022 14:01

Sample Receipt

The following sample(s) were received on March 10, 2022 in good condition, unless otherwise noted.

Cross Reference Table

	Cross Reference Table	
Client ID	Laboratory ID	Station ID(if applicable)
1; 5.2-1	L95403-1	0-4 CM
8; 5.2-1	L95403-2	28-32 CM
15; 5.2-1	L95403-3	56-60 CM
22; 5.2-1	L95403-4	84-88 CM
29; 5.2-1	L95403-5	112-116 CM
36; 5.2-1	L95403-6	140-144 CM
43; 5.2-1	L95403-7	168-172 CM
50; 5.2-1	L95403-8	196-200 CM
57; 5.2-1	L95403-9	224-228 CM
63; 5.2-1	L95403-10	248-252 CM
64; 5.1-1	L95403-11	0-4 CM
72; 5.1-1	L95403-12	32-36 CM
80; 5.1-1	L95403-13	64-68 CM
88; 5.1-1	L95403-14	96-100 CM
96; 5.1-1	L95403-15	128-132 CM
104; 5.1-1	L95403-16	160-164 CM
112; 5.1-1	L95403-17	192-196 CM
120; 5.1-1	L95403-18	224-228 CM
128; 5.1-1	L95403-19	256-260 CM
137; 5.1-1	L95403-20	292-296 CM

Sample Analysis

Instrument(s) used for all analyses were in calibration.

Standard solution(s) used in analyses were National Institute of Standards and Technology (NIST) traceable.

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1

Case Narrative - L95403 AN003-3EREGBTESKE-22

03/23/2022 14:01

Special Considerations

Gamma Spectroscopy

Quality Control

Quality control sample(s) analyzed as WG38781, WG38795.

Duplicate Sample

All duplicate result(s) were within acceptance limits, unless otherwise noted. Duplicate(s) were analyzed for the following sample(s).

Client ID	Laboratory ID	QC Sample #
JORDAN COVE W	L95387-1	WG38781-1
SA-GAM-13E3	L95392-1	WG38795-1

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

ANALYTICAL RESULTS

03/23/22 14:01

BROWN ENGINEERING, INC. A Teledyne Technologies Company

L95403

Brent Teske

AN003-3EREGBTESKE-22

Collect Start: 02/13/2022 13:34 Matrix: Sediment/Silt (SS) Sample ID: 1; 5.2-1 Volume: Station: 0-4 CM Collect Stop: 02/13/2022 13:40 % Moisture: 35.53 Description: Receive Date: 03/10/2022 LIMS Number: L95403-1

Count Count Activity Uncertainty Run Aliquot Aliquot Reference Count SOP# MDC Units Flag Values Units Radionuclide Volume Units Date Date Time Conc 2 Sigma 1.81E-02 3.95E-02 21.4 g dry 02/13/22 13:40 03/17/22 62071 Sec No CS-137 2007 6.62E-02

pCi/g Dry (SS) Collect Start: 02/13/2022 13:34 Matrix: Sediment/Silt Sample ID: 8; 5.2-1

Station: 28-32 CM Volume: Collect Stop: 02/13/2022 13:40

% Moisture: 33.49 Description: Receive Date: 03/10/2022

LIMS Number: L95403-2 Aliquot Aliquot Reference Count Count Count Activity Uncertainty Run Flag Values Radionuclide SOP# MDC Units Units Date Time Units Volume Date Conc 2 Sigma 03/18/22 3.00E-02 32.3 g dry 02/13/22 13:40 64800 Sec U No CS-137 2007 3.63E-02 5.25E-02 pCi/g Dry

(SS) Collect Start: 02/13/2022 13:34 Matrix: Sediment/Silt Sample ID: 15: 5.2-1

Station: 56-60 CM Volume: Collect Stop: 02/13/2022 13:40

% Moisture: 35.8 Description: Receive Date: 03/10/2022 LIMS Number: L95403-3

Count Count Aliquot Aliquot Reference Count Activity Uncertainty Run Flag Values SOP# MDC Units Radionuclide Volume Units Date Date Time Units Conc 2 Sigma

03/18/22 64800 02/13/22 13:40 U 4.54E-02 3.94E-02 4.20E-02 pCi/g Dry 35.7 g dry Sec Yes CS-137 2007 (SS) Collect Start: 02/13/2022 13:34 Matrix: Sediment/Silt Sample ID: 22: 5.2-1

Station: 84-88 CM Collect Stop: 02/13/2022 13:40 % Moisture: 36.82 Description: Receive Date: 03/10/2022

Run Aliquot Aliquot Reference Count Count Count Activity Uncertainty Flag Values SOP# MDC Units Radionuclide Volume Units Date Date Time Units Conc 2 Sigma 02/13/22 13:40 03/17/22 62056 No CS-137 26.7 Sec 2007 3.26E-02 4.89E-02 8.32E-02 pCi/g Dry g dry

Flag Values

TBE-ROA013

Compound/Analyte not detected (< MDC) or less than 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma T [*

Activity concentration exceeds customer reporting value High

=== MDC exceeds customer technical specification Spec

Low recovery High recovery

LIMS Number: L95403-4

Bolded text indicates reportable value.

Page 1 of 5

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

Volume:

**** Unless otherwise noted, the analytical results reported are related only to the samples tested in the condition they are received by the laboratory.

MDC - Minimum Detectable Concentration

03/23/22 14:01

BROWN ENGINEERING, INC. A Teledyne Technologies Company

L95403

Brent Teske

AN003-3EREGBTESKE-22

Station:	29; 5.2-1		3,3,4,4					/13/2022 13:		_	Matrix: Se	diment/Silt			(SS)
	112-116	CM						/13/2022 13:	40		olume:				
Description:						Receive :	Date: 03	/10/2022		% Mo	oisture: 30	.69			
LIMS Number:	L95403-	5													
Radionuclide		SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fla	ng Values
S-137		2007	2.74E-02	3.08E-02	5.19E-02	pCi/g Dry		30.4	g dry	02/13/22 13:40	03/18/22	64800	Sec	U	No
Sample ID:	36; 5.2-1					Collect	Start: 02	/13/2022 13:	34]	Matrix: Se	diment/Silt	:		(SS)
•	140-144					Collect	Stop: 02	/13/2022 13:	40	V	olume:				
Description:						Receive !	Date: 03	/10/2022		% Mo	oisture: 41	.21			
LIMS Number:	L95403-	6													
Radionuclide		SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fla	ng Values
S-137		2007	4.68E-02	3.65E-02	6.43E-02	pCi/g Dry		24.6	g dry	02/13/22 13:40	03/17/22	62086	Sec	U	No
Sample ID:	43; 5.2-1				4111	Collect	Start: 02	/13/2022 13:	34		Matrix: Se	diment/Silt	:		(SS)
Station:	168-172	CM				Collect	Stop: 02	/13/2022 13:	40		olume:				
Description:						Receive	Date: 03	/10/2022		% Mo	oisture: 40	.14			
LIMS Number:	L95403-	7													
			Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count		
Radionuclide		SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	FI	ng Values
S-137		2007	9.32E-02	3.46E-02	4.29E-02	pCi/g Dry		27.4	g dry	02/13/22 13:40	03/18/22	64800	Sec	+	Yes
	50. 5 2-1					Collect	Start: 02	/13/2022 13:	34		Matrix: Se	diment/Silt	:		(SS)
Sample ID:	20,20						a. 00	/12/2022 12.	10	T.	olume:				
	196-200	CM				Collect	Stop: 02	/13/2022 13:	40						
		CM					*	/13/2022 13: /10/2022	40		oisture: 34	.07			
Station: Description:							*		40			.07	Count		

#

Volume

45.9

Units

g dry

Date

02/13/22 13:40

Flag '	Va.	lue
--------	-----	-----

TBE-ROA013

CS-137

Radionuclide

Compound/Analyte not detected (< MDC) or less than 3 sigma

SOP#

2007

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Conc

1.19E-01

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

2 Sigma

5.25E-02

MDC

6.65E-02

Units

pCi/g Dry

Activity concentration exceeds customer reporting value High

MDC exceeds customer technical specification Spec Low recovery

High recovery

Bolded text indicates reportable value.

Page 2 of 5

No = Peak not identified in gamma spectrum

Time

64800

Units

Sec

Yes = Peak identified in gamma spectrum

Date

03/18/22

**** Unless otherwise noted, the analytical results reported are related only to the samples tested in the condition they are received by the laboratory.

MDC - Minimum Detectable Concentration

Flag Values

Yes

03/23/22 14:01

BROWN ENGINEERING, INC. A Teledyne Technologies Company

L95403

Brent Teske

AN003-3EREGBTESKE-22

Matrix: Sediment/Silt (SS) Sample ID: 57; 5.2-1 Collect Start: 02/13/2022 13:34 Volume: Station: 224-228 CM Collect Stop: 02/13/2022 13:40 Description: % Moisture: 27.7 Receive Date: 03/10/2022

LIMS Number: L95403-9

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units		Flag Values
CS-137	2007	4.68E-02	3.56E-02	6.08E-02	pCi/g Dry		31.1	g dry	02/13/22 13:40	03/18/22	64800	Sec	U	No
Sample ID: 63: 5	.2-1				Collect	Start: 02	/13/2022 13:	34		Matrix: Se	diment/Silt			(SS)

Matrix: Sediment/Silt Collect Start: 02/13/2022 13:34 Sample ID: 63; 5.2-1

Station: 248-252 CM Volume: Collect Stop: 02/13/2022 13:40

% Moisture: 34.86 Description: Receive Date: 03/10/2022

LIMS Number: L95403-10

Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	I	Flag Values
CS-137	2007	3.53E-02	4.48E-02	7.55E-02	pCi/g Dry		24.8	g dry	02/13/22 13:40	03/17/22	62078	Sec	U	No
Sample ID: 64: 5.	1-1				Collect	Start: 02	/13/2022 12:	52]	Matrix: Se	ediment/Sil	t		(SS)

Collect Start: 02/13/2022 12:52 Matrix: Sediment/Silt Sample ID: 64; 5.1-1 Station: 0-4 CM Volume:

Collect Stop: 02/13/2022 13:00 Receive Date: 03/10/2022 % Moisture: 36.13

Description: LIMS Number: L95403-11

Aliquot Aliquot Reference Count Count Count Activity Uncertainty Run Flag Values SOP# MDC Units Radionuclide Volume Units Date Date Time Units Conc 2 Sigma 02/13/22 13:00 03/17/22 62093 Sec CS-137 2007 2.68E-02 3.92E-02 6.46E-02 pCi/g Dry 25.5 No g dry

Matrix: Sediment/Silt (SS) Sample ID: 72; 5.1-1 Collect Start: 02/13/2022 12:52

Volume: Station: 32-36 CM Collect Stop: 02/13/2022 13:00

% Moisture: 40.9 Description: Receive Date: 03/10/2022 LIMS Number: L95403-12

Aliquot Reference Count Count Activity Uncertainty Run Aliquot Count Flag Values SOP# MDC Units Radionuclide # Time Units Conc Volume Units Date Date 2 Sigma -1.16E-02 02/13/22 13:00 03/17/22 62081 Sec No CS-137 2007 3.62E-02 5.91E-02 pCi/g Dry 26.9 g dry

Flag Values

TBE-ROA013

Compound/Analyte not detected (< MDC) or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value High =

MDC exceeds customer technical specification Spec ==

Low recovery High recovery

Bolded text indicates reportable value.

Page 3 of 5

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Unless otherwise noted, the analytical results reported are related only to the samples tested in the condition they are received by the laboratory.

MDC - Minimum Detectable Concentration

03/23/22 14:01

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L95403

Brent Teske

AN003-3EREGBTESKE-22

200 104; 5.1-1 160-164 CM L95403-16	7 7.64E-02 Activity	2 Sigma 4.74E-02 Uncertainty 2 Sigma	8.37E-02 MDC	Collect	Start: 02 Stop: 02	27.3 2/13/2022 12:: 2/13/2022 13: 2/10/2022 Aliquot Volume	g dry	02/13/22 13:00 V	03/17/22 Matrix: Se folume: obsture: 33 Count Date	62114 diment/Silt .69 Count Time	Sec Count Units	U	No (SS)
200 104; 5.1-1 160-164 CM				Collect Collect	Start: 02 Stop: 02 Date: 03	27.3 ./13/2022 12:: ./13/2022 13:	g dry 52 00	02/13/22 13:00 P V % Mc	Matrix: Se folume: oisture: 33	diment/Silt		U	
200 104; 5.1-1 160-164 CM				Collect Collect	Start: 02 Stop: 02	27.3 ./13/2022 12:: ./13/2022 13:	g dry	02/13/22 13:00 V	Matrix: Se olume:	diment/Silt		U	
200				Collect Collect	Start: 02 Stop: 02	27.3 ./13/2022 12:: ./13/2022 13:	g dry	02/13/22 13:00 V	Matrix: Se olume:	diment/Silt		U	
200						27.3	g dry	02/13/22 13:00	Matrix: Se			U	
						27.3	g dry	02/13/22 13:00	1			U	
	Conc	2 Sigma			#		Units						
SO	Activity	Uncertainty	MDC	Units	Run #	Aliquot	Aliquot		Count Date	Count Time	Count Units	Fl	ag Values
L95403-15													
120 102 0141					•			% Mc	oisture: 35	.73			
•													()
	, 1.03.5-02	1.302-02	7.5555-02		Start: 02				L				(SS)
200		<u> </u>	7 35E-02	nCi/o Dry		41.7	g drv	02/13/22 13:00	03/18/22	64800	Sec	U	No
SO	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	FI	ag Values
L95403-14									,				
					-			% Mc	oisture: 35	.63			
96-100 CM				Collect	Stop: 02	/13/2022 13:0	00	V	olume:				
88: 5.1-1			1		Start: 02	/13/2022 12::	52	P	Matrix: Se	diment/Silt			(SS)
200	7 3.94E-02	3.16E-02	5.59E-02	pCi/g Dry	İ	21.4	g dry	02/13/22 13:00	03/17/22	62106	Sec	U	No
SO	P# Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fl	ag Values
L95403-13													
					-			% Mc	oisture: 29	.79			
64-68 CM				Collect	Stop: 02	/13/2022 13:0	00	V	olume:				` ,
5. L 8 2 1:	95403-13 SOI 200°	SOP# Activity Conc 2007 3.94E-02 3.95403-14 SOP# Conc 2007 1.83E-02 2007 1.83E-02 2007 2007 1.83E-02 2007 20	SOP# Activity Uncertainty 2 Sigma 2007 3.94E-02 3.16E-02 3.16E-02 3.95403-14 SOP# Activity Conc 2 Sigma 2007 1.83E-02 4.36E-02 4.	SOP# Activity Uncertainty MDC	A-68 CM Collect Receive	A-68 CM Collect Stop: 02 Receive Date: 03	A-68 CM Collect Stop: 02/13/2022 13:0 Receive Date: 03/10/2022 Rece	Collect Stop: 02/13/2022 13:00 Receive Date: 03/10/2022 Receive Date:	A-68 CM Collect Stop: 02/13/2022 13:00 V	Activity Uncertainty Collect Stop: 02/13/2022 13:00 Volume: 29	A-68 CM	Activity Uncertainty Collect Stop: 02/13/2022 13:00 Volume: 29.79	Collect Stop: 02/13/2022 13:00 Volume:

Flag Values

TBE-ROA013

U = Compound/Analyte not detected (< MDC) or less than 3 sigma

+ = Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

U* = Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

High = Activity concentration exceeds customer reporting value

Spec = MDC exceeds customer technical specification

L = Low recovery H = High recovery

Bolded text indicates reportable value.

Page 4 of 5

No = Peak not identified in gamma spectrum

Yes = Peak identified in gamma spectrum

**** Unless otherwise noted, the analytical results reported are related only to the samples tested in the condition they are received by the laboratory.

MDC - Minimum Detectable Concentration

03/23/22 14:01

BROWN ENGINEERING, INC. A Teledyne Technologies Company

L95403

Brent Teske

AN003-3EREGBTESKE-22

Sample ID: Station: Description: LIMS Number:	192-196 (CM				Collect	Stop: 02	2/13/2022 12:: 2/13/2022 13: 3/10/2022		V	Matrix: Se folume: 34	diment/Silt	E		(SS)
Radionuclide		SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fla	g Values
CS-137		2007	6.14E-02	3.75E-02	6.51E-02	pCi/g Dry		44.1	g dry	02/13/22 13:00	03/18/22	64800	Sec	U	No
Sample ID: Station: Description: LIMS Number:	224-228 (CM				Collect	Stop: 02	2/13/2022 12:: 2/13/2022 13:: 3/10/2022		V	Matrix: Se folume: pisture: 34	ediment/Silv	t		(SS)
Radionuclide		SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fla	g Values
CS-137		2007	1.48E-01	5.30E-02	6.01E-02	pCi/g Dry		23.6	g dry	02/13/22 13:00	03/17/22	62133	Sec	+	Yes
Description:	128; 5.1-1 256-260 (L95403-1	CM				Collect	Stop: 02	2/13/2022 12: 2/13/2022 13: 3/10/2022		V	Matrix: Se olume: oisture: 31	ediment/Sil	t		(SS)
Radionuclide	1000000	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fla	g Values
CS-137		2007	8.09E-02	5.28E-02	5.56E-02	pCi/g Dry		49.1	g dry	02/13/22 13:00	03/21/22	63387	Sec	+	Yes
Description:	137; 5.1-1 292-296 (L95403-2	CM				Collect	Stop: 02	2/13/2022 13: 2/13/2022 13: 3/10/2022		V	Matrix: Se folume: pisture: 33	ediment/Sil	t		(SS)
Radionuclide		SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Fla	g Values

Flag Values

TBE-ROA013

CS-137

Compound/Analyte not detected (< MDC) or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

1.73E-01

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

5.35E-02

6.11E-02

pCi/g Dry

Activity concentration exceeds customer reporting value High

2007

MDC exceeds customer technical specification Spec

Low recovery

High recovery

Bolded text indicates reportable value.

Page 5 of 5

53.6

g dry

02/13/22 13:00

No = Peak not identified in gamma spectrum

63423

Sec

Yes = Peak identified in gamma spectrum

03/21/22

**** Unless otherwise noted, the analytical results reported are related only to the samples tested in the condition they are received by the laboratory.

MDC - Minimum Detectable Concentration

Yes

QC RESULIS

QC Summary Report for L95403 AN003-3EREGBTESKE-22

TELEDYNE BROWN ENGINEERING Everywhereyoulook*

03/23/2022 14:01

GAMMA

WG38781

GAMMA

			0.1.1.1.1.	-					
			Duplicate Sum	mary					
TBE Sample ID Radi	onuclide Matrix	Count Date/Time	Original Result	DUP Result	<u>Units</u>	RPD	Range	Qualifier	<u>P/F</u>
WG38781-1 K-40 L95387-1	VA	03/10/2022 12:48	6.561E+00	5.754E+00	pCi/g Wet	13.1	<50	+	P
WG38795-1 K-40	AN	03/11/2022 11:21	3.007E+03	3.013E+03	pCi/kg Wet	0.2	<50	+	P

Associated Sam	oles for
Sample #	Client ID
L95403-1	1; 5.2-1
L95403-2	8; 5.2-1
L95403-3	15; 5.2-1
L95403-4	22; 5.2-1
L95403-5	29; 5.2-1
L95403-6	36; 5.2-1
L95403-7	43; 5.2-1
L95403-8	50; 5.2-1
L95403-9	57; 5.2-1
L95403-10	63; 5.2-1

⁺ Positive Result

U Compound/analyte was analyzed, peak not identified and/or not detected above MDC

^{* &}lt; 5 times the MDC are not evaluated

^{**} Nuclide not detected

^{***} Spiking level < 5 times activity

P Pass

r rass F Fail

NE Not evaluated

QC Summary Report for L95403 AN003-3EREGBTESKE-22

03/23/2022 14:01

GAMMA

GAMMA	٨	/T	T.	١Æ	٨	\sim	

Associated Samples	for	WG38795
Sample #	Client ID	
L95403-11	64; 5.1-1	
L95403-12	72; 5.1-1	
L95403-13	80; 5.1-1	
L95403-14	88; 5.1-1	
L95403-15	96; 5.1-1	
L95403-16	104; 5.1-1	
L95403-17	112; 5.1-1	
L95403-18	120; 5.1-1	
L95403-19	128; 5.1-1	
L95403-20	137; 5.1-1	

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC

< 5 times the MDC are not evaluated

Nuclide not detected

Spiking level < 5 times activity

Pass

Fail

Not evaluated

Page 2

L95403 13 of 332

SAMPLE RECEIPT

498	TEL	EDYI	VE
h. A	BROV	VN ENG	INEERING
			ies Eppeany

Analysis Request Chain of Custody

Client	name:	Anchor	QE

E - Environmental:	E

P - 10CFR61, 10CFR50, Other high level:

198403

Lims#

Phone Number 608-616-9450

Cell number:

email;

Turn-around-time 14 d

Purchase order:

(for lab use)

bteske@Anchorgea.com

Seattle, WA 98101

Client address: 1201 3rd Ave, Suite 2600

Page___1__of ___1

									Contact:	Brent Teske
T.I. Number (for lab use)	Client Sample ID	Description	Station	Collection Date/Time Start Stop		Volume	Units	Matrix or type	Analysis Request	
	1; 5.2-1	0-4 cm		2/13/2022 13:34	2/13/2022 1	13:40			SS	GELI, Sample Prep
	8; 5.2-1	28-32 cm		2/13/2022: 13:34	2/13/2022 1	13:40			ss	GELI, Sample Prep
	15; 5.2-1	56-60 cm		2/13/2022. 13:34	2/13/2022	13:40			ss	GELI, Sample Prep
	22; 5.2-1	84-88 cm		2/13/2022 13:34	2/13/2022 1	13:40			ss	GELI, Sample Prep
	29; 5.2-1	112-116 cm		2/13/2022 13:34	2/13/2022 1	13:40			ss	GELI, Sample Prep
	36; 5.2-1	140-144 cm		2/13/2022 13:34	2/13/2022	13:40			ss	GELI, Sample Prep
	43; 5.2-1	168-172 cm		2/13/2022 13:34	2/13/2022 1	13:40			ss	GELI, Sample Prep
	50; 5.2-1	196-200 cm		2/13/2022 13:34	2/13/2022 1	13:40			SS	GELI, Sample Prep
	57; 5.2-1	224-228 cm		2/13/2022 13:34	2/13/2022	13:40			SS	GELI, Sample Prep
	63; 5.2-1	248-252 cm		2/13/2022 13:34	2/13/2022 1	13:40			SS	GELI, Sample Prep
	64; 5.1-1	0-4 cm		2/13/2022 12:52	2/13/2022 1	13:00			SS	GELI, Sample Prep
	72; 5.1-1	32-36 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	80; 5.1-1	64-68 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	88; 5.1-1	96-100 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	96; 5.1-1	128-132 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	104; 5.1-1	160-164 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	112; 5.1-1	192-196 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	120; 5:1-1	224-228 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	128; 5.1-1	256-260 cm		2/13/2022 12:52	2/13/2022	13:00			SS	GELI, Sample Prep
	137; 5.1-1	292-296 cm		2/13/2022 13:00	2/13/2022	13:00			SS	GELI, Sample Prep

Special Instructions:									
·									
Relinquished by:	Date:	Relinguished by:	Date:	Relinquished by:	Date:				
Received by:	Date: 5-10-22	Received by:	Date:	Received by:	Date:				

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133 865-690-6819

General Information

Quote#:

Q685

Quote Date: 02/10/2022

Description: 120 Soil Core samples for Cs-137 dating.

Client:

Anchor QEA

Address:

1201 3rd Ave, Suite 2600

Seattle, WA 98101

Contact:

Brent Teske

Phone #:

(608)616-9450

Fax#:

Email:

bteske@Anchorgea.com

Project Manager:

Karli Arterburn

Email: Phone: Karli.Arterburn@Teledyne.com

(865)934-0371

Fax:

Ship samples to:

Teledyne Brown Engineering

2508 Quality Lane Knoxville, TN 37931

Attention: Sample Receiving

Project Requirements

Data Deliverable:

Level 4 - Full 3Sigma

Ext.

Estimated Start Date:

Electronic Deliverable:

EQuis, AQ EZEDD, EDI Anchor QEA

Quote Expiration:

12/31/2022

Terms: Net 30

Regulatory Agency:

Standard turn around time may be extended depending on how many sample are sent to be analyzed due the

additional step of drying and grinding.

------Price per Sample ------

Matrix

Comments:

Product Code

30 Day TAT

Sediment/Silt

Gamma

\$126.00

Sediment/Silt

Lead 210

\$84:00

Sediment/Silt

Ph-210 0.1 pCi/g Sample Prep

\$25.00

Drying, grinding, and sieving samples.

Cs-137 0.1 pCi/g (extended count)

Special Considerations

Unless otherwise instructed, batch Laboratory QC will be used and is included in

pricing.

Disclaimer

Receipt of samples from the above referenced project shall constitute acceptance of TBE payments terms of and acceptance of the Laboratory Terms and Conditions.

Batch QC is included in pricing.

Client specific QC will be billed at the above rate.

1 of 2 Page:

03/23/22 14:09

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR73957

Client: Anchor QEA, LLC

Project #: AN003-3EREGBTESKE-22

LIMS #L95403

Initiated By: KNOXLAB

Init Date: 03/10/22 Receive Date: 03/10/22

Notification of Variance

Person Notified:

Notify Date: Notify Method: Contacted By:

Notify Comment:

Client Response

Person Responding:

Response Date:
Response Method:
Response Comment:

address and phone number.

12 Paperwork shows sample quantity

information.

Criteria Yes No NA Comment

1 Shipping container custody seals present NA

		and intact.	141
	2	Sample container custody seals present and intact.	NA
	3	Sample containers received in good condition.	Y
	4	Chain of custody received with samples.	Y
	5	All samples listed on chain of custody received.	Y
	6	Sample container labels present and legible.	Y
	7	Information on container labels correspond with chain of custody.	У
	8	Sample(s) properly preserved.	Y
	9	Sample(s) appropriate container(s).	Y
	10	Other. (Describe)	AN
For	Ha	azardous Materials Only:	
	11	Paperwork shows TBE and shippers name,	AN

NA

INTERNAL CHAIN OF CUSTODY

03/23/22 09:37

Teledyne Brown Engineering Internal Chain of Custody

Page: 1 of 3

******************* Sample # L95403-1 Containernum 1

Analyst

Prod GELI

DH

SAMPLE PREP

03/10/2022 00:00

Received By Relinquish Date Relinquish By

099999 Sample Custodian

Sample # L95403-2

Containernum 1

Prod GELI Analyst DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

****************** Sample # L95403-3 Containernum 1

Prod GELI Analyst

DH

SAMPLE PREP

Received By Relinquish Date Relinquish By

099999 Sample Custodian 03/10/2022 00:00

Sample # L95403-4

Containernum 1

Prod

Analyst

DH GELI

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

***************** Containernum 1

Sample # L95403-5

Analyst

Prod GELT

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Sample # L95403-6 Containernum 1

Prod

Analyst

GELI

SAMPLE PREP

Relinquish Date Relinquish By

Received By 099999

Sample Custodian

03/10/2022 00:00 ***********************

Sample # L95403-7

Containernum 1

Prod

Analyst

GELI

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

03/23/22 09:37

Teledyne Brown Engineering Internal Chain of Custody

Sample # L95403-8

Containernum 1

Prod

Analyst

GELI

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Page:

2 of 3

Sample # L95403-9

************************ Containernum 1

Prod

Analyst

GELI

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Sample # L95403-10

********************* Containernum 1

Prod GELI Analyst

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

099999

Sample Custodian

*********************** Sample # L95403-11

03/10/2022 00:00

Containernum 1

Prod

Analyst

GELI DH

SAMPLE PREP

03/10/2022 00:00

Relinquish Date Relinquish By

Received By

099999

Sample Custodian

************************ Sample # L95403-12

Containernum 1

Prod GELI Analyst

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Sample # L95403-13

Containernum 1

Prod GELI Analyst

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Sample # L95403-14

Containernum 1

Prod GELI Analyst DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

L95403 20 of 332

03/23/22 09:37

Teledyne Brown Engineering Internal Chain of Custody

Page: 3 of 3

Sample # L95403-15

Containernum 1

Prod

Analyst

GELI

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Sample # L95403-16

Containernum 1

Prod

Analyst

GELI

DH

SAMPLE PREP

03/10/2022 00:00

Sample # L95403-17

Relinquish Date Relinquish By

Received By

099999 Sample Custodian

Containernum 1

Prod

Analyst

GELI

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

099999

03/10/2022 00:00

Sample # L95403-18

Containernum 1

Prod GELI Analyst

DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999 Sample Custodian

****************** Sample # L95403-19

Containernum 1

Prod GELI Analyst DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

Sample Custodian

********************* Sample # L95403-20

Containernum 1

Prod

Analyst

GELI DH

SAMPLE PREP

Relinquish Date Relinquish By

Received By

03/10/2022 00:00

099999

Sample Custodian

L95403-1	SS	1; 5.2-1						
Process step	Prod		Analyst	Date				
Login			KARTERBURN	03/10/22				
%Moisture			DH	03/10/22				
Aliquot	GELI		DH	03/16/22				
Aliquot	SAMPLE	PREP						
Count Room	GELI		SMC	03/17/22				
******	****	******	*****	*******				
L95403-2	SS	8; 5.2-1						
Process step	<u>Prod</u>		<u>Analyst</u>	<u>Date</u>				
Login			KARTERBURN	03/10/22				
%Moisture			DH	03/10/22				
Aliquot	GELI	•	DH	03/16/22				
Aliquot	SAMPLE	PREP						
Count Room	GELI		SMC	03/18/22				
******	*****	******	*****	********				
L95403-3	SS	15; 5.2-1						
Process step	<u>Prod</u>		<u>Analyst</u>	<u>Date</u>				
Login			KARTERBURN	03/10/22				
%Moisture			DH	03/10/22				
Aliquot	GELI		DH	03/16/22				
Aliquot	SAMPLE	PREP						
Count Room	GELI		SMC	03/18/22				
			*****	*******				
L95403-4	SS	22; 5.2-1						
Process step	<u>Prod</u>		Analyst	Date				
Login			KARTERBURN	03/10/22				
%Moisture			DH	03/10/22				
Aliquot	GELI		DH	03/16/22				
Aliquot	SAMPLE	PREP		/ /				
Count Room	GELI		SMC	03/17/22				
			*****	********				
L95403-5	SS	29; 5.2-1		-				
Process step	Prod		Analyst	Date				
Login			KARTERBURN	03/10/22				
%Moisture	~~~		DH	03/10/22				
Aliquot	GELI		DH	03/16/22				
Aliquot	SAMPLE	FREP	ava	02/10/00				
Count Room	GELI		SMC	03/18/22				
			******	, , , , , , , , , , , , , , , , , , ,				
L95403-6	SS	36; 5.2-1	n 1	D-4-				
Process step	Prod		Analyst	<u>Date</u>				
Login			KARTERBURN	03/10/22				
9-Mai at			TOTT	02/10/22				
%Moisture	ODI T		DH	03/10/22				
Aliquot	GELI	, DDED	DH DH	03/10/22 03/16/22				
	GELI SAMPLE GELI	: PREP						

******	*******************									
L95403-7	SS	43; 5.	2-1							
Process step	Prod			Analyst	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/18/22					
******	*****	*****	*****	*****	*******					
L95403-8	SS	50; 5.	2-1							
Process step	<u>Prod</u>			Analyst	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/18/22					
*****	****	*****	******	*****	*******					
L95403-9	SS	57; 5.	2-1							
Process step	<u>Prod</u>			<u>Analyst</u>	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/18/22					
******	*****	*****	******	*****	*******					
L95403-10	SS	63; 5.	2-1							
Process step	<u>Prod</u>			<u>Analyst</u>	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/17/22					
********	*****	*****	******	******	*******					
L95403-11	SS	64; 5.	L-1							
Process step	Prod			Analyst	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/17/22					
	*****	*****	*****	******	*******					
L95403-12	SS	72; 5.	1-1							
Process step	<u>Prod</u>			<u>Analyst</u>	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/17/22					

*****	*******	****	******	******	********					
L95403-13	SS	80;	5.1-1							
Process step	Prod			Analyst	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP								
Count Room	GELI			SMC	03/17/22					
****	*****	****	******	******	********					
L95403-14	SS	88;	5.1-1							
Process step	Prod			<u>Analyst</u>	<u>Date</u>					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREP)							
Count Room	GELI			SMC	03/18/22					
*****	*****	****	*****	*****	**********					
L95403-15	SS	96;	5.1-1							
Process step	Prod			<u>Analyst</u>	Date					
Login				KARTERBURN	03/10/22					
%Moisture				DH	03/10/22					
Aliquot	GELI			DH	03/16/22					
Aliquot	SAMPLE	PREF								
Count Room	GELI			SMC	03/17/22					
******	****************									
L95403-16	SS	104;	5.1-1							
Process step	ss Prod	104;	5.1-1	Analyst	<u>Date</u>					
	_	104;	5.1-1	Analyst KARTERBURN	03/10/22					
Process step Login %Moisture	_	104;	5.1-1		03/10/22 03/10/22					
Process step Login %Moisture Aliquot	_	104;	5.1-1	KARTERBURN	03/10/22					
Process step Login %Moisture	Prod			KARTERBURN DH	03/10/22 03/10/22 03/16/22					
Process step Login %Moisture Aliquot Aliquot Count Room	Prod GELI SAMPLE GELI	PREF		KARTERBURN DH DH SMC	03/10/22 03/10/22 03/16/22 03/18/22					
Process step Login %Moisture Aliquot Aliquot Count Room	Prod GELI SAMPLE GELI	PREF		KARTERBURN DH DH SMC	03/10/22 03/10/22 03/16/22					
Process step Login %Moisture Aliquot Aliquot Count Room ***********************************	Prod GELI SAMPLE GELI ******	PREE		KARTERBURN DH DH SMC	03/10/22 03/10/22 03/16/22 03/18/22 *********					
Process step Login %Moisture Aliquot Aliquot Count Room ***********************************	Prod GELI SAMPLE GELI *****	PREE	******	KARTERBURN DH DH SMC ******** Analyst	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login	Prod GELI SAMPLE GELI ******	PREE	******	KARTERBURN DH DH SMC	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login %Moisture	Prod GELI SAMPLE GELI ******	PREE	******	KARTERBURN DH DH SMC ******** Analyst KARTERBURN DH	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******* L95403-17 Process step Login %Moisture Aliquot	Prod GELI SAMPLE GELI ******	PREE	******	KARTERBURN DH SMC ******** Analyst KARTERBURN	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******* L95403-17 Process step Login %Moisture Aliquot Aliquot	Prod GELI SAMPLE GELI ****** SS Prod	PREF ***** 112 ;	**************************************	KARTERBURN DH DH SMC ******** Analyst KARTERBURN DH	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******* L95403-17 Process step Login %Moisture Aliquot Aliquot Count Room	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI GELI GELI	PREF **** 112 ;	********* 5.1-1	KARTERBURN DH SMC ********** Analyst KARTERBURN DH DH DH SMC	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******* L95403-17 Process step Login %Moisture Aliquot Aliquot Count Room	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI GELI GELI	PREF **** 112; PREF ****	**************************************	KARTERBURN DH SMC ********** Analyst KARTERBURN DH DH DH SMC	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login %Moisture Aliquot Aliquot Count Room ********** L95403-18	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI ****** SS	PREF **** 112; PREF ****	********* 5.1-1	KARTERBURN DH SMC *************** Analyst KARTERBURN DH DH SMC ***********************************	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login %Moisture Aliquot Aliquot Count Room ********** L95403-18 Process step	Prod GELI SAMPLE GELI ******* SS Prod GELI SAMPLE GELI ******	PREF **** 112; PREF ****	**************************************	KARTERBURN DH SMC ********* Analyst KARTERBURN DH DH SMC ***********************************	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login %Moisture Aliquot Aliquot Count Room ********* L95403-18 Process step Login	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI ****** SS	PREF **** 112; PREF ****	**************************************	KARTERBURN DH SMC ********* Analyst KARTERBURN DH DH SMC ***********************************	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login %Moisture Aliquot Count Room ********* L95403-18 Process step Login %Moisture	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI ****** SS Prod	PREF **** 112; PREF ****	**************************************	KARTERBURN DH SMC ********** Analyst KARTERBURN DH DH SMC *************** Analyst KARTERBURN DH DH	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******* L95403-17 Process step Login %Moisture Aliquot Count Room ******* L95403-18 Process step Login %Moisture Aliquot Aliquot Count Room *************** Aliquot Aliquot Aliquot Aliquot Aliquot Aliquot Aliquot Aliquot	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI ****** SS Prod	PREE **** 112; PREE **** 120;	**************************************	KARTERBURN DH SMC ********* Analyst KARTERBURN DH DH SMC ***********************************	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					
Process step Login %Moisture Aliquot Aliquot Count Room ******** L95403-17 Process step Login %Moisture Aliquot Count Room ********* L95403-18 Process step Login %Moisture	Prod GELI SAMPLE GELI ****** SS Prod GELI SAMPLE GELI ****** SS Prod	PREE **** 112; PREE **** 120;	**************************************	KARTERBURN DH SMC ********** Analyst KARTERBURN DH DH SMC *************** Analyst KARTERBURN DH DH	03/10/22 03/10/22 03/16/22 03/18/22 ***********************************					

L95403-19	SS	128; 5.1-1									
Process step	Prod		<u>Analyst</u>	<u>Date</u>							
Login			KARTERBURN	03/10/22							
%Moisture			DH	03/10/22							
Aliquot	GELI		DH	03/16/22							
Aliquot	SAMPLE	PREP									
Count Room	GELI		SMC	03/21/22							
******	*****	******	******	*******							
L95403-20	SS	137; 5.1-1									
Process step	Prod		<u>Analyst</u>	<u>Date</u>							
Login			KARTERBURN	03/10/22							
%Moisture			DH	03/10/22							
Aliquot	GELI		DH	03/16/22							
Aliquot	SAMPLE	PREP									
Count Room			SMC	03/21/22							

GAMMA SPECTROSCOPY

Gamma Spectroscopy

Background

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:20:18.81
TBE01 33-TP20784A HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:17.00

LIMS No., Customer Name, Client ID: BKG

Sample ID : 01BG030422MT Smple Date: 4-MAR-2022 00:00:00.0

Sample Type : PCI Geometry : 01FT082219

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

 Start Channel: 80
 Energy Tol: 2.00000 Real Time: 2 12:00:21.41

 End Channel: 4090
 Pk Srch Sens: 5.00000 Live time: 2 12:00:00.00

MDA Multiple : 1.30890ELibrary Used: LIBD Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	1	63.13	415	3905	1.04	126.70	124	7	1.92E-03	25.2	4.09E+00
2	2	72.70	722	3223	0.95	145.82	136		3.34E-03	13.0	3.42E+00
3	2	74.95	1455	3213	0.94	150.30	136	18	6.73E-03	6.8	
4	1	84.62	1018	3868	1.28	169.62	166	8 -	4.71E-03		2.47E+00
5	1	87.37	324	2763	1.20	175.11	174		1.50E-03		1.23E+00
6	1	92.63	1891	3426	1.16	185.62	182		8.75E-03		8.00E-01
. 7	1	139.75	325	2702	1.00	279.71	277		1.50E-03		1.80E+00
8	1	143.61	430	3003	1.36	287.41	284		1.99E-03	22.6	8.91E-01
9	1	185.76	1485	3390	1.01	371.59	367		6.88E-03		8.30E-01
10	1	198.23	404	2434	1.05	396.50	393		1.87E-03		3.48E+00
11	1	238.72	696	2898	1.13	477.36	473		3.22E-03		1.40E+00
12	1	295.20	323	2212	1.22	590.15	587		1.50E-03		2.69E+00
13	1	352.17	748	2455	1.62	703.93	698		3.46E-03		3.66E+00
14	1	511.16	5839	2717	2.72	1021.45	1014		2.70E-02		1.65E+00
15	1	569.91	211	1175	1.61	1138.81	1134		9.75E-04		9.53E-01
16	1	583.42	348	1227	1.42	1165.79	1161				4.58E-01
17	1	609.49	657	1206	1.75	1217.87	1213		3.04E-03		7.81E-01
18	1	803.17	210	635		1604.75	1600				1.08E+00
19	1	847.08	640	1123		1692.46	1683		2.96E-03	12.7	
20	1	911.71	212	589	1.84	1821.56	1816		9.79E-04		
21	1	969.33	91	467	1.88	1936.67	1933		4.23E-04		
22	1	1001.51	188	508	2.59	2000.96	1996		8.69E-04		5.49E-01
23	1	1120.56	165	486	2.13	2238.80	2233		7.63E-04		
24	1	1238.84	160	345	2.21	2475.13	2470				1.24E+00
25	1	1461.58	853	360	2.54	2920.19	2913		3.95E-03		2.07E+00
26	.1	1764.95	183	279	2.26	3526.47	3519	17	8.47E-04	22.3	2.01E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:20:27.96 TBE02 51-TP42214B HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:17.80 _____

LIMS No., Customer Name, Client ID: BKG

Sample ID : 02BG030422MT Smple Date: 4-MAR-2022 00:00:00.0

Sample Type : PCI Geometry: 02FT082119

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

i											
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	3	63.39	658	3038	0.96	111.51	108	13	3.05E-03	13.9	1.86E+00
2	3	66.35	478	3064	1.06	117.47	108	13	2.21E-03	18.9	
3	2	72.91	1228	3413	0.98	130.66	126	16	5.69E-03	8.1	3.87E+00
2 3 4 5	2	74.96	2423	2773	0.88	134.80	126	16	1.12E-02	3.9	
5	2	77.05	365	2156	0.70	139.00	126	16	1.69E-03	18.9	
. 6	0	84.72	1248	3807	1.31	154.43	151	7	5.78E-03	8.7	
7	0	87.14	400	3166	0.85	159.30	158	6	1.85E-03	22.9	
8 9	Ô	92.65	1789	4082	1.09	170.39	167	8	8.28E-03	6.6	
9	0	139.99	341	4092	1.16	265.63	262		1.58E-03		
10	0	143.91	278	3628	0.87	273.54	271		1.29E-03		
11	0	185.90	1384	3956	1.05	358.03	354	9	6.41E-03	8.6	
12	0	238.64	740	2649	0.93	464.15	461		3.43E-03		
13	0	241.42	172	2614	1.57	469.73	468		7.97E-04		
14	0	295.32	459	2381	1.18	578.20			2.13E-03		
15	0	338.08	137	1857	0.87	664.24	661	8	6.35E-04	55.1	
16	0	351.98	1012	2014	1.24	692.22	688		4.69E-03		
17	0	511.01	5511	2426	2.55	1012.24	1004		2.55E-02		
18	0	583.44	331	923		1158.00	1153		1.53E-03		
19	0	609.38	790	1192		1210.21	1205		3.66E-03		
20	0	802.76	238	533		1599.40	1595		1.10E-03		
21	0	846.77	508	823		1687.98	1681		2.35E-03		
22	0	911.27	243	662	1.89	1817.80	1812		1.13E-03		
23	0	1001.15	99	422	1.23	1998.71	1994		4.57E-04		
24	0	1120.55	222	415		2239.04	2233		1.03E-03		
25	0	1460.60	979	340		2923.55	2913		4.53E-03		
26	0	1764.71	276	197	2.10	3535.80	3529	16	1.28E-03	13.0	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:20:47.60 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:18.51

LIMS No., Customer Name, Client ID: BKG

Smple Date: 4-MAR-2022 00:00:00.0 Sample ID : 06BG030422MT

Sample Type : PCI Quantity : 1.00000E+00 TOTAL Geometry : 06FT012721 BKGFILE : NOBKG

		<u> </u>	-								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	0	75.01	742	3487	0.94	150.49	148		3.44E-03		
2	0	84.60	629	3875	1.11	169.64	166	8	2.91E-03	17.6	
, 3	0	92.64	708	3734	1.10	185.69	182		3.28E-03		
	0	140.03	319	3416	0.94	280.30	277	. 8	1.48E-03	32.2	
4 5	Ö	185.73	1003	3681	1.14	371.52	368	9	4.64E-03	11.3	
6	0	198.35	359	3248	1.43	396.72	393	8	1.66E-03	28.0	
7	0	238.64	795	2857	1.16	477.14	473	8	3.68E-03	12.2	
8	0	295.36	363	2507	1.12	590.37	587		1.68E-03		
9	0	352.12	660	2282	1.12	703.67	699	10	3.06E-03	14.1	
10	0	511.00	5491	2729	2.52	1020.80	1013	17	2.54E-02	2.6	
11	0	569.88	237	1277	1.26	1138.33	1134	10	1.10E-03	28.9	
12	0	583.40	453	1178	1.21	1165.31	1161		2.10E-03		
13	0	609.48	607	1354	1.48	1217.38	1213		2.81E-03		
14	0	727.50	108	515	1.49	1452.92	1450		5.00E-04		
15	. 0	803.18	206	757	1.76	1603.96	1600		9.55E-04		
16	0	847.01	236	940	1.97	1691.43	1686		1.09E-03		
17	0	911.29	479	646	1.83	1819.72	1814		2.22E-03		
18	0	969.52	126	648	1.16	1935.93	1930		5.82E-04		
19	0	1120.47	261	555	1.16	2237.17	2233		1.21E-03		
20	0	1238.80	90	395		2473.29	2469		4.15E-04		
21	0	1461.07	1626	449	1.88	2916.79	2909		7.53E-03		
22	0	1764.87	295	263	2.01	3522.92	3517	13	1.37E-03	12.7	

________ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:21:11.85

TBE07 31-TP10768B HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:19.02

LIMS No., Customer Name, Client ID: BKG

Smple Date: 4-MAR-2022 00:00:00.0 Sample ID : 07BG030422MT

Geometry : 07FT082119 BKGFILE : NOBKG Sample Type : PCI Quantity : 1.00000E+00 TOTAL

										,	
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	3	63.42	482	3069	1.22	126.63	123	14	2.23E-03	19.7	1.49E+00
2	3	66.33	574	3670	1.31	132.45	123	14	2.66E-03		
. , 3	3	72.80	1584	4219	1.38	145.41	141	18	7.34E-03	7.5	5.84E-01
4	3	74.99	3129	3945	1.31	149.79	141		1.45E-02	4.0	
. 5	3	77.17	455	2809	1.07	154.15	141		2.11E-03		
. 6	3	84.78	1794	4024	1.57	169.37	162		8.30E-03		5.80E-01
7	3	87.34	530	3003	1.15	174.49	162		2.45E-03		9
7 8	1	92.67	1647	3871	1.30	185.15	181		7.63E-03		2.86E+00
9	1	139,75	329	3405	1.31	279.34	276		1.53E-03		
10	1	143,62	268	3466	1.41	287.09	284		1.24E-03		
11	1	185.74	1207	4104	1.56	371.35	367	10			2.41E-01
12	1	198.33	479	3212	1.47	396.54	393	8			7.29E-01
13	1	238.49	1156	3370	1.27	476.89	473		5.35E-03		2.50E+00
. 14	1	295.12	437	2428	0.89	590.18	586		2.03E-03		
15	1	338.75	487	2283	2.14	677.47	673	9			5.58E+00
16	1	351.73	935	2937	1.59	703.43	698		4.33E-03		
17	1	510.78	7517	3512		1021.59	1012	22	3.48E-02		2.96E+00
18	1	569.60	201	1457		1139.25	1134	10			4.73E-01
19	1	582.98	749	1371		1166.03	1160	11			1.83E+00
20	1	609.23	994	2116		1218.52	1213	13			7.69E-01
21	1	802.54	398	1559		1605.18	1595	20			7.44E-01
22	1	846.38	581	1449		1692.87	1685	16			8.73E-01
23	1	910.84	409	889		1821.79	1816				6.34E-01
24	1	968.99	273	699		1938.08	1933				5.26E-01
25	1	1120.01	263	613		2240.11	2235	11			7.10E-01
26	1	1460.25	2023	627		2920.48	2909	22			8.75E-01
27	1	1727.69	112	531		3455.19	3445	27	5.19E-04		
28	1	1763.58	426	460	3.11	3526.94	3515	24	I.97E-03	14.3	1.26E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:21:29.94 TBE08 31-TP20610B HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:18.05

LIMS No., Customer Name, Client ID: BKG

Smple Date: 4-MAR-2022 00:00:00.0 Sample ID : 08BG030422MT

Geometry: 08FT082019
BKGFILE: NOBKG : PCI Sample Type

Quantity : 1.00000E+00 TOTAL

			-						•		•
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	1	67.04	394	3094	1.09	140.22	138	6	1.83E-03	22.9	1.60E+00
2	1	75.63	1335	4718	0.82	157.37	154	7	6.18E-03	8.9	2.85E+00
3	1	85.35	1032	3996	1.41	176.76	173	8	4.78E-03	11.0	2.53E+00
4	1	93.30	971	4116	1.21	192.62	188	9	4.49E-03	12.3	5.06E-01
5	1	186.46	914	3785	1.19	378.42	375	9	4.23E-03	12.6	4.12E-01
6	1	199.36	291	3110	1.36	404.13	401	8	1.35E-03	33.8	6.84E-01
7	1	239.27	1199	2908	1.21	483.72	480	8	5.55E-03	8.3	9.13E-01
8	1	242.86	339	2714	1.35	490.89	487	8	1.57E-03		2.71E+00
9	1	296.01	402	2760	1.75	596.87	592	10	1.86E-03		
10	1	338.90	201	1980	1.30	682.39	679	8		38.8	9.19E-01
11	1	352.64	1082	2838	2.21	709.79	704	13	5.01E-03	10.5	6.54E+00
12	1	511.45	5343	2541	2.85	1026.40	1018	17	2.47E-02		2.10E+00
13	1	583.64	501	1354	1.63	1170.29	1165	11	2.32E-03		
14	1	609.79	749	1392	1.64	1222.41	1217	11	3.47E-03	10.3	5.03E-01
15	1	846.97	353	1029	1.78	1695.08	1689	14	1.63E-03		1.77E+00
16	1	911.34	492	820	1.91	1823.34	1817	14	2.28E-03		9.14E-01
17	1	969.21	198	650	1.48	1938.64	1932	11			1.91E+00
18	1	1120.50	205	476	1.73	2240.00	2235	10	9.50E-04		1.21E+00
19	1	1237.89	170	459	2.47	2473.81	2468	12	7.87E-04		
20	1	1377.76	84	239	1.64	2752.32	2749	9	3.91E-04	34.7	6.54E-01
21	1	1460.96	1492	435	1.99		2910	16	6.91E-03		7.37E-01
22	1	1764.53	338	237	2.98	3522.24	3515	18	1.57E-03	12.0	1.53E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:21:39.23 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:19.72

LIMS No., Customer Name, Client ID: BKG

Sample ID : 11BG030422MT Smple Date: 4-MAR-2022 00:00:00.0

Geometry : 11FT112019 Sample Type : PCI
Quantity : 1.00000E+00 TOTAL

BKGFILE : NOBKG

						•					
Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw C	ts/Sec	%Err	Fit
		V 1 3									
1	0		2817				87		30E-02		
. 2		53.39			1.50				28E-03		
3 4	3	63.30			1.19		121				1.62E+00
4	3	66.07			1.50	130.75	121		97E-03		
5 6	7	71.27	718	5839	2.21		136				2.22E+00
		72.95	3478		1.18	144.51	136		61E-02		
. 7	7	75.05	6480	3615	1.21		136		00E-02		
8	.7	77.11	484	3044	0.99		136		24E-03		
9	3	84.85	3034	4253	1.45		163				1.27E+00
10	3	87.36	769	2885	0.98		163		56E-03		
11	0	92.82	3115	5019	1.35	184.24	179		44E-02		
12	0	139.86	254	3096	1.58	278.28	276		18E-03		
13	0	143.85	421	3568	1.42	286.26	283		95E-03		
14	0	75.05 77.11 84.85 87.36 92.82 139.86 143.85 185.97	1331	4281	1.29	370.47	366	10 6.	16E-03	9.6	
15	0	198.46	324	3229	1.33	370.47 395.45 476.26 589.53 702.83	392	8 1,	50E-03	30.8	
16	0	238.88	674	3441	1.36	476.26	472	93.	12E-03	16.2	
17	0	295.53	340	2219	1.11	589.53	586	8 1.	57E-03	24.6	
18	0	352.20	531	2069	1.39	702.83	699	92.	46E-03	16.1	
19	0	511.41	7452	3541	2.84	1021.15	1012	24 3.	45E-02	2.4	
20	0	570.00	175	1182	2.75	1138.30	1135		11E-04		
21	0	583.45	491	1513	1.42	1165.20	1159	12 2.	27E-03	16.5	
22	0	609.63	736	2046	1.59	1217.54	1210		41E-03		
23	0	796.03	82	788	0.93	1590.22	1585	10 3.	78E-04	65.5	
24	0	803.26	183	864	1.23	1604.70	1601	10 8.	49E-04	30.8	
25	0	846.93	633	1109	1.64	1692.00	1686	13 2.	93E-03	11.5	
26	. 0	911.30	399	827	1.37	1820.71	1814	14 1.	84E-03	16.1	
27	. 0	969.73	122	588	2.06	1937.53	1932	10 5.	63E-04	38.5	
28	0	1120.36	249	710	2.33	2238.72	2232	15 1.	15E-03	24.2	
29		1238.79	183	611	1.21	2475.50	2468	15 8.	47E-04	30.4	
30		1246.46	103	551		2490.85	2483		79E-04		
31		1461.19	1228	659	2.41	2920.19	2910	22 5.	68E-03	6.0	
.32		1556.32	8	232	3.23	3110.41	3107	11 3.	73E-05	366.8	
	0	1765.22	188	338	1.79	3528.09	3519	15 8.	71E-04	22.5	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:21:20.77 TBE13 31-TP10727B HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:20.32

LIMS No., Customer Name, Client ID: BKG

Sample ID : 13BG030422MT Smple Date: 4-MAR-2022 00:00:00.0

Sample Type : PCI Geometry : 13FT012021

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

MDA Multiple : 1.30890ELibrary Used: LIBD Peak Evaluation - Identified and Unidentfied

		-					_		_		
Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw Cts/	Sec	%Err	Fit
1	1	63.16	313	2283	0.84	126.28	124	6 1.45E	-03	24.6	1.48E+00
2	1	66.52	161	2266	0.86	132.98	131	6 7.46E	-04	47.4	1.89E+00
3	10	69.87	548	2728	1.64	139.67	136	22 2.54E	-03	17.4	6.33E+00
4	10	72.70	1226	2436	1.13	145.31	136	22 5.68E	-03	7.4	
5	10	74.79	1922	2135	0.93	149.48	136	22 8.90E	:-03	4.5	
6	10	76.92	583	2529	1.22	153.73	136	22 2.70E			
7	6	84.59	998	2498	1.14	169.03	165	13 4.62E			1.33E+00
8	6	87.15	458	2063	1.01	174.14	165	13 2.12E			4.15
9	1	92.51	910	2961	1.05	184.84	181				6.23E+00
10	1	139.94	340	2893	1.15	279.47	276	8 1.57E			2.33E+00
11	1	185.47	880	2796	1.00	370.33	367	8 4.07E			
12	1	198.09	312	2689	0.91	395.51	392				3.21E-01
13	. 1	238.43	1067	2975	0.96	476.02	471				1.82E+00
14	1	294.93	383	1786	1.04	588.78	585				6.09E-01
15	1	338.34	323	1716	1.52	675.42	671				1.39E+00
16	1	351.68	827	1763	1.41	702.05	697				2.45E+00
1.7	7	510.54	4009	1876	2.45	1019.21	1012	22 1.86E			5.74E+00
18	7	511.58	1345	1338		1021.29	1012	22 6.23E		7.5	
19	1	582.92	438	1003	1.65	1163.75	1158				7.51E-01
20	1	609.06	592	1054		1215.95	1211				7.23E-01
21	1	726.98	106	566	1.07		1449				8.30E-01
22	1	802.69	188	518	1.59	1602.74	1599				6.26E-01
23	1	846.28	507	899	2.20	1689.85	1681	15 2.35H			3.67E+00
24	1	911.00	374	590		1819.16	1813				1.58E+00
25	1	968.60	122	368		1934.27	1930				7.85E-01
26	1	1120.42	215	481		2237.75	2231				1.84E+00
27	1	1238.59	94	366	2.04		2470				9.19E-01
28	1	1460.58	1176	365		2918.02	2909	19 5.44			7.92E-01
29	1	1764.25	230	193	2.91	3525.67	3518	16 1.07	±-03	14.9	9.62E-01

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:20:56.91

TBE14 54-TP42603C HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:18.70

LIMS No., Customer Name, Client ID: BKG

Smple Date: 4-MAR-2022 00:00:00.0 Sample ID : 14BG030422MT

Geometry : 14FT082119 Sample Type : PCI
Quantity : 1.00000E+00 TOTAL

BKGFILE : NOBKG

 Start Channel: 80
 Energy Tol: 2.00000 Real Time: 2.12:00:34.29

 End Channel: 4090
 Pk Srch Sens: 5.00000 Live time: 2.12:00:00.00

MDA Multiple : 1.30890ELibrary Used: LIBD

Peak Evaluation - Identified and Unidentified

		· · · · · · · · · · · · · · · · · · ·	_				•			;	
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	Fit
1	1	46.72	247	3283	0.96	90.52	88	7 1	.14E-03	39.0	1.96E-01
- 2	1	63.35	215	2126	0.82	123.83	122	5 9	.93E-04	32.9	9.28E-01
: 3	1	66.31	419	2855	1.20	129.75	127	7 1	.94E-03	21.7	4.07E+00
4	2	72.83	749	2222	0.80	142.80	139	13 3	.47E-03	10.1	5.25E-01
- 5	2	74.97	1531	2192	0.76	147.09	139	13 7	.09E-03	5.3	
6	4	84.75	1162	2462	1.25	166.68	161	15 5	.38E-03	7.7.7	2.18E+00
7	4	87.42	438	2760	1.25	172.01	161		.03E-03		
8	1	92.60	787	3197	0.92	182.38	178	9 3	.64E-03	13.5	5.64E-01
9	1	139.72	252	2685	1.34	276.73	273	8 1	.17E-03	36.1	1.04E+00
10	1	185.77	856	3051	1.32	368.94	364	10 3	.96E-03	12.6	8.93E-01
11	1	198.29	217	1497	0.75	394.01	392	5 1	.01E-03	27.5	4.94E-01
12	1	238.54	485	2733	1.09	474.58	470	10 2	.24E-03	20.6	9.76E-01
13	1	294.99	302	1396	1.58	587.63	584				3.42E+00
14	1	351.84	493	1267	1.15	701.46	698	8 2	.28E-03	13.3	4.31E-01
15	1.	510.87	4330	2104	2.74	1019.91	1012		.00E-02		1.17E+00
16	1	583.34	220	904	1.73	1165.05	1160	10 1	02E-03	26.4	1.63E+00
17	1	609.22	365	976	1.39	1216.87	1212				6.38E-01
18	1	802.48	105	645	2.52	1603.95	1599				2.41E+00
19	1	846.63	413	669	1.85	1692.37	1688	13 1	91E-03	13.9	1.74E+00
20	1	910.82	173	397	1.61	1820.95	1817				1.12E+00
21	1	968.82	107	426	1.97	1937.13	1932				2.43E+00
22	1	1120.02	125	375	1.83	2240.02	2233				4.53E-01
23	1	1460.25	805	345	2.11	2921.67	2912		3.72E-03		2.23E+00
24	1	1764.07	129	251	2.78	3530.51	3522	16 5	.96E-04	28.9	2.53E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 7-MAR-2022 09:20:36.66 TBE23 11410 HpGe ****** Aquisition Date/Time: 4-MAR-2022 12:08:18.26

LIMS No., Customer Name, Client ID: BKG

1764.78

34 0

Smple Date: 4-MAR-2022 00:00:00.0

Sample ID : 23BG030422MT
Sample Type : PCI
Quantity : 1.00000E+00 TOTAL Geometry : 23FT121020

BKGFILE : NOBKG

 Start Channel: 80
 Energy Tol: 2.00000
 Real Time: 2 12:00:24.00

 End Channel: 4090
 Pk Srch Sens: 5.00000
 Live time: 2 12:00:00.00

 MDA Multiple: 1.30890ELibrary Used: LIBD

Peak Evaluation - Identified and Unidentified

Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err Pk It Energy 10 6.99E-03 8.3 4082 0.96 92.95 88 1 0 46.45 1509 2 8 63.36 66.36 3 8 4 2 74.89 77.19 2 5 6 0 84.27 7 0 87.30 0 92.83 8 0 112.74 . 9 139.66 10 0 2282 1.04 287.26 284 7 1.87E-03 20.2 2849 1.00 371.33 367 9 6.51E-03 7.3 2603 0.92 396.39 393 8 1.57E-03 26.6 11 0 143,70 405 12 0 185.77 1407 339 198.31 13 0 1767 0.93 409.67 408 6 7.03E-04 44.5 152 14 0 204.96 1597 0.97 477.05 473 13 1.53E-02 2.6 1.62E+00 3300 15 1 238.67 1835 1.16 481.84 473 1410 1.30 590.42 587 320 183 13 1.48E-03 24.9 241,07 16 1 7 8.49E-04 34.8 295.40 17 0 256 2322 1.01 598.91 594 11 1.18E-03 37.0 299.64 18 0 402 1199 1.24 703.48 700 7 1.86E-03 15.1 5670 2073 2.57 1021.51 1014 17 2.63E-02 2.3 468 1161 1.48 1139.42 1134 12 2.17E-03 15.3 958 1054 1.39 1166.04 1161 11 4.44E-03 7.3 324 1147 1.04 1217.83 1214 9 1.50E-03 19.6 101 593 1.34 1338.32 1336 8 4.68E-04 42.8 351.95 19 0 511.02 20 0 569.98 21 0 583.29 22 0 609.19 23 0 24 0 669.42 1450 10 6.80E-04 35.7 744 1.19 1454.69 25 0 727.59 147 10 8.73E-04 26.4 189 653 1.55 1605.99 1601 0 803.22 26 546 1.43 1720.81 1717 487 1.94 1822.05 1817 634 1.16 1923.80 1917 145 9 6.69E-04 30.3 860.60 27 0 213 11 9.84E-04 21.2 28 0 911.19 1.16 1923.80 1917 156 437 2.21 2002.34 1997 276 486 1.45 2127.34 2121 63 403 1.29 2240.55 2237 621 258 2.08 2922.81 2915 103 219 1.20 3531.86 3524 12 4.84E-04 49.1 105 29 0 962.03 11 7.21E-04 27.3 30 0 1001.27 13 1.28E-03 17.5 0 1063.71 31 9 2.92E-04 58.6 32 0 1120.25 13 2.87E-03 6.7 33 0 1460.89

12 4.77E-04 30.4

GAMMA SPECTROSCOPY

Initial Calibration

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

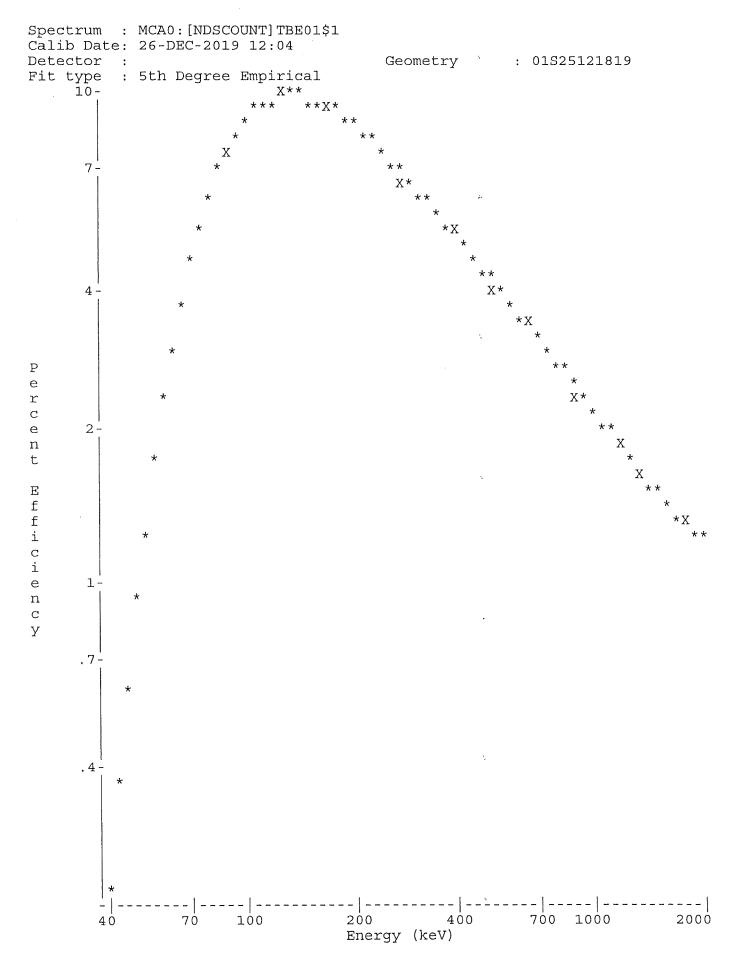
		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1006.0	-0.06%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.0	0.14%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	51.1	0.34%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	143.9	-7.78%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	192.6	1.04%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	242.2	-1.55%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	175.4	2.21%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	393.8	-3.06%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	202.8	-0.31%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	207.4	1.84%
Y-88	106.65d	1836.0	908		99.38%	403,69	401.19	401.6	-0.52%

Eff. Name: 01S25121819

Analyst:

KOJ

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:04:39.66 TBE01 33-TP20784A HpGe ****** Aquisition Date/Time: 18-DEC-2019 12:47:40.18



LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Smple Date: 1-JUN-2019 12:00:00.0 Sample ID : 01S25121819

Sample Type : STD Geometry : 01S25121819 Quantity : 1.00000E+00 TOTAL BKGFILE : 01BG112719MT

							••			
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.45	873	3808	1.00	93.40	7.53E-01	1.15E-01	12.2	3.75E+00
2	1	88.03	16295	6174	0.91	176.45	7.74E+00	2.15E+00	1.2	9.74E-01
3	1	122.06	15462	5708	0.93	244.42	9.95E+00	2.04E+00	1.3	1.85E+00
4	1	136.46	1848	3995	0.93	273.18	1.00E+01	2.44E-01	6.6	4.08E-01
5	1	165.87	10934	4511	0.98	331.91	9.60E+00	1,44E+00	1.5	2.21E+00
6	1	255.13	773	3303	1.28	510.20	7.43E+00	1.02E-01	13.8	1.74E+00
7	1	279,18	3150	3109	1.14	558.24	6.94E+00	4.15E-01	3.6	2.14E+00
8	1	391.74	14953	3343	1.21	783.06	5,26E+00	1.97E+00	1.1	1.41E+00
9	1	513.99	8925	3061	1,24	1027.27	4.15E+00	1.18E+00	1.6	5.91E-01
10	1	661.59	36880	2841	1.41	1322.13	3.30E+00	4.86E+00	0.6	7.72E-01
11	1	813.93	273	1389	1.86	1626,49	2.71E+00	3.60E-02	26.0	2.58E+00
12	1	898.00	18696	2476	1.63	1794.47	2.46E+00	2.46E+00	0.9	1.34E+00
13	1	1173.24	27075	1426	1.85	2344.43	1.89E+00	3.57E+00	0.7	4.76E+00
14	1	1324.88	289	668	2,56	2647.44	1.68E+00	3.81E-02	19.9	7.84E-01
15	1	1332.54	24528	764	1.96	2662.75	1.67E+00	3.23E+00	0.7	2.70E+00
16	1	1835.98	10624	255	2.33	3668.96	1:29E+00	1.40E+00	1.0	4.72E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:05:42.41 TBE01 33-TP20784A HpGe ****** Aquisition Date/Time: 18-DEC-2019 12:47:40.18

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

: 01S25121819 Sample ID Smple Date: 1-JUN-2019 12:00:00.0

Sample Type : STD Geometry : 01S25121819 : 1.00000E+00 TOTAL Quantity BKGFILE : 01BG112719MT Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 02:06:53.02 End Channel: 4090 Pk Srch Sens: 7.00000 Live time: 0 02:06:29.39 MDA Multiple: 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	°%Eff	Cts/Sec	%Err	Fit
1	1	46.45	873	3808	1.00	93.40	7.53E-01	1.15E-01	12.2	3.75E+00
2	1	88.03	16295	6174	0.91	176.45	7.74E+00	2.15E+00	1.2	9.74E-01
3	1	122.06	15462	5708	0.93	244.42	9.95E+00	2.04E+00	1.3	1.85E+00
4	1	136.46	1848	3995	0.93	273.18	1.00E+01	2.44E-01	6.6	4.08E-01
5	1	165.87	10934	4511	0.98	331,91	9.60E+00	1.44E+00	1.5	2.21E+00
6	1	255.13	773	3303	1.28	510.20	7.43E+00	1.02E-01	13.8	1.74E+00
7	1	279,18	3150	3109	1.14	558.24	6.94E+00	4.15E-01	3.6	2.14E+00
8	1	391.74	14953	3343	1.21	783.06	5.26E+00	1.97E+00	1.1	1.41E+00
9	1	513.99	8925	3061	1.24	1027.27	4.15E+00	1.18E+00	1.6	5.91E-01
10	1	661.59	36880	2841	1.41	1322.13	3.30E+00	4.86E+00	0.6	7.72E-01
11	1	813.93	273	1389	1,86	1626.49	2.71E+00	3.60E-02	26.0	2.58E+00
12	1	898.00	18696	2476	1.63	1794.47	2.46E+00	2.46E+00	0.9	1.34E+00
13	1	1173.24	27075	1426	1.85	2344.43	1.89E+00	3.57E+00	0.7	4.76E+00
14	1	1324.88	289	668	2.56	2647.44	1.68E+00	3.81E-02	19.9	7.84E-01
15	1	1332.54	24528	764	1.96	2662.75	1.67E+00	3.23E+00	0.7	2.70E+00
16	1	1835.98	10624	255	2.33	3668.96	1.29E+00	1.40E+00	1.0	4.72E+00

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88,03	16295	3.72*	7.738E+00	7.459E+02	1.006E+03	2.45
03-CO57	122.06	15462	85.51*	9.946E+00	2.395E+01	3.997E+01	2.54
04-CE139	165.85	10934	80.35*	9.601E+00	1.867E+01	5.114E+01	3.07
05-HG203	279.20	3150	81.46*	6.936E+00	7.346E+00	1.439E+02	7.30
06-SN113	391.69	14953	64.90*	5.260E+00	5.771E+01	1.926E+02	2.29
07-SR85	513.99	8925	99.27*	4.152E+00	2.853E+01	2.422E+02	3.28
08-CS137	661.65	36880	85.12*	3.296E+00	1,732E+02	1.754E+02	1.22
09-Y88	898.02	18696	93.40*	2.458E+00	1.073E+02	3.938E+02	1.89
10-CO60	1173.22	27075	100.00	1.891E+00	1.887E+02	2.028E+02	1.38
	1332.49	24528	100.00*	1.674E+00	1.930E+02	2.074E+02	1.39
12-Y88	1836.01	10624	99.38*	1.287E+00	1.094E+02	4.016E+02	2.08

Summary of Nuclide Activity Page: 2 Acquisition date: 18-DEC-2019 12:47:40 Sample ID : 01S25121819

Total number of lines in spectrum 16 Number of unidentified lines 5

Number of lines tentatively identified by NID 11 68.75%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.459E+02	1.006E+03	0.025E+03	2.45
03-CO57	270.90D	1.67	2.395E+01	3.997E+01	0.101E+01	2.54
04-CE139	137.66D	2.74	1.867E+01	5.114E+01	0.157E+01	3.07
05-HG203	46.61D	19.6	7.346E+00	1.439E+02	0.105E+02	7.30
06-SN113	115.10D	3.34	5.771E+01	1.926E+02	0.044E+02	2.29
07-SR85	64.84D	8.49	2.853E+01	2.422E+02	0.079E+02	3.28
08-CS137	30.17Y	1.01	1.732E+02	1.754E+02	0.021E+02	1.22
09-Y88	106.65D	3.67	1.073E+02	3.938E+02	0.074E+02	1.89
10-CO60	5.27Y	1.07	1.930E+02	2.074E+02	0.029E+02	1.39
12-Y88	106.65D	3.67	1.094E+02	4.016E+02	0.084E+02	2.08

Total Activity: 1.465E+03 2.855E+03

Grand Total Activity : 1.465E+03 2.855E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 01S25121819 Page: 3
Acquisition date: 18-DEC-2019 12:47:40

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff Flags
1	46.45	873	3808	1.00	93.40	90	7	1.15E-01	24.3	7.53E-01
1	136.46	1848	3995	0.93	273.18	269	9	2.44E-01	13.2	1.00E+01
1	255.13	773	3303	1.28	510.20	506	9	1.02E-01	27.7	7.43E+00
1	813.93	273	1389	1.86	1626.49	1622	10	3.60E-02	52.1	2.71E+00
1	1324.88	289	668	2.56	2647.44	2641	14	3.81E-02	39.7	1.68E+00

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 5
Number of lines tentatively identified by NID 11 68.75%

Nuclide Type :

nacitae Type,											
			Wtd Mean	Wtd Mean							
			Uncorrected	Decay Corr	Decay Corr	2-Sigma					
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags					
02-CD109	462.90D	1.35	7.459E+02	1.006E+03	0.025E+03	2.45					
03-CO57	270.90D	1.67	2.395E+01	3.997E+01	0.101E+01	2.54					
04-CE139	137.66D	2.74	1.867E+01	5.114E+01	0.157E+01	3.07					
05-HG203	46.61D	19.6	7.346E+00	1.439E+02	0.105E+02	7.30					
06-SN113	115.10D	3.34	5.771E+01	1.926E+02	0.044E+02	2.29					
07-SR85	64.84D	8.49	2.853E+01	2.422E+02	0.079E+02	3.28					
08-CS137	30.17Y	1.01	1.732E+02	1.754E+02	0.021E+02	1.22					
09-Y88	106.65D	3.67	1.073E+02	3.938E+02	0.074E+02	1.89					
10-CO60	5.27Y	1.07	1.908E+02	2.051E+02	0.020E+02	0.98					
12-Y88	106.65D	3.67	1.094E+02	4.016E+02	0.084E+02	2.08					
			years have been used more more both death	and and the tree to the price them price							

Total Activity: 1.463E+03 2.852E+03

Grand Total Activity: 1.463E+03 2.852E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109 03-CO57 04-CE139 05-HG203 06-SN113	1.006E+03 3.997E+01 5.114E+01 1.439E+02 1.926E+02	2.464E+01 1.014E+00 1.570E+00 1.051E+01 4.407E+00	1.546E+01 6.132E-01 1.070E+00 1.033E+01 2.722E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	65.101 65.179 47.778 13.933 70.732

07-SR85 08-CS137 09-Y88 10-CO60 12-Y88	2.422E+02 1.754E+02 3.938E+02 2.051E+02 4.016E+02	7.940E+00 2.138E+00 7.444E+00 2.007E+00 8.365E+00	5.671E+00 8.972E-01 3.952E+00 8.230E-01 2.259E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	42.717 195.463 99.670 249.140 177.763
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	-5.914E-01	1.827E+00	2.908E+00	0.000E+00	-0.203

```
A,01S25121819
                    ,12/26/2019 12:05,06/01/2019 12:00,
                                                             1.000E+00,S25 5ML MIXED
                                           ,12/26/2019 12:04,01S25121819
B,01S25121819
                    , CALIBRATION
C, 02-CD109, YES,
                   1.006E+03,
                                  2.464E+01,
                                                1.546E+01,,
                                                               65.101
C,03-CO57,YES,
                    3.997E+01,
                                                6.132E-01,,
                                                               65.179
                                  1.014E+00,
C,04-CE139,YES,
                                                               47.778
                    5.114E+01,
                                  1.570E+00,
                                                1.070E+00,,
                    1.439E+02,
                                                1.033E+01,,
                                                               13.933
C, 05-HG203, YES,
                                  1.051E+01,
                    1.926E+02,
                                                2.722E+00,,
                                                               70,732
                                  4.407E+00,
C, 06-SN113, YES,
                                                5.671E+00,,
                                                               42.717
C,07-SR85,YES,
                    2.422E+02,
                                  7.940E+00,
                                                8.972E-01,,
                                                              195.463
C, 08-CS137, YES,
                    1.754E+02,
                                  2.138E+00,
          ,YES,
                                                3.952E+00,,
                                                               99.670
C,09-Y88
                    3.938E+02,
                                  7.444E+00,
                                                8.230E-01,,
                                                              249.140
C,10-CO60 ,YES,
                    2.051E+02,
                                  2.007E+00,
          , YES,
C, 12-Y88
                                                2.259E+00,,
                                                              177.763
                    4.016E+02,
                                  8.365E+00,
                                                2.908E+00,,
                                                               -0.203
                   -5.914E-01,
                                  1.827E+00,
C, 01-AM241, NO ,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

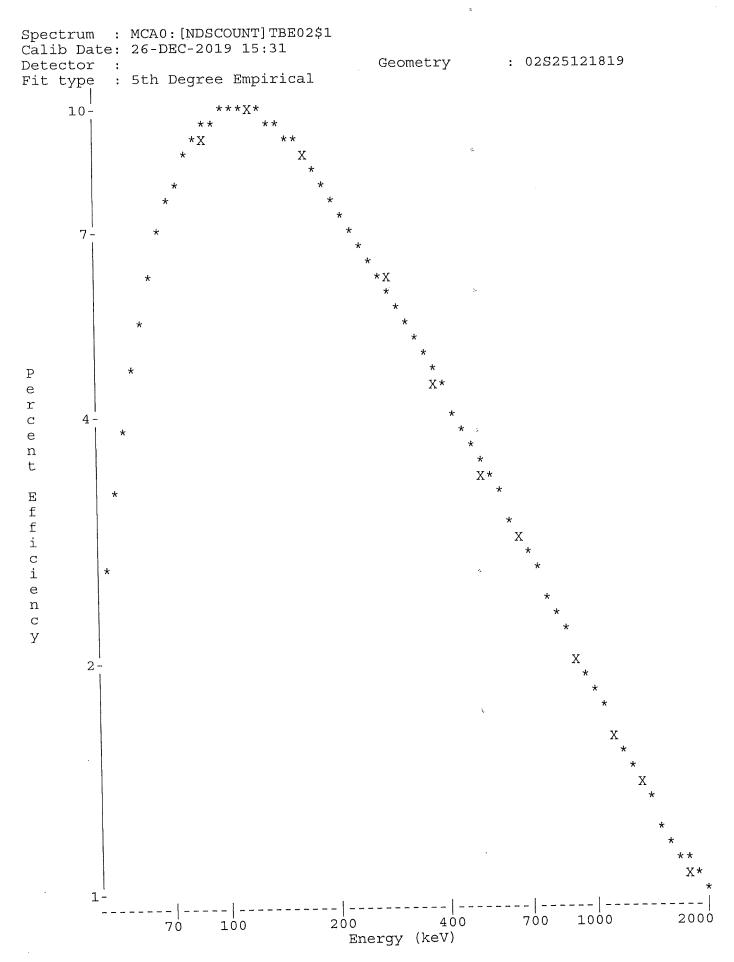
		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1003.0	-0.36%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.5	1.56%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	50.0	-1.83%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	149.2	-4.39%
Sn-113	115,09d	391.7	280		64.90%	190.62	123.72	192.7	1.09%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	239.1	-2.81%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	175.3	2.15%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	395.1	-2.74%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	206.2	1.37%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	204.0	0.17%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	402.5	-0.30%

Eff. Name: 02S25121819

Analyst:

L95403 47 of 332

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 15:31:26.63
TBE02 51-TP42214B HpGe ****** Aquisition Date/Time: 18-DEC-2019 18:27:24.76


LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Sample Type : STD Geometry : 02S25121819
Quantity : 1.00000E+00 TOTAL BKGFILE : 02BG112719MT
Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 04:00:55.90
End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 04:00:00.00

End Channel : 4090 Pk Srch Sens: 9.00000 Liv MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	88.00	37891	11475	0.91	160.79	9.51E+00	2.63E+00	0.8	
2	0	122.02	30362	9762	0.98	229.23	1.02E+01	2.11E+00	0.9	
3	0	136.42	3890	6454	1.03	258.18	9.85E+00	2.70E-01	4.1	
4	0	165.86	18919	7972	1.06	317.42	8.96E+00	1.31E+00	1.2	
5	0	255.18	1383	5277	1.23	497.07	6.55E+00	9.60E-02	9.9	
6	0	279.23	5403	5694	1.14	545.46	6.07E+00	3.75E-01	3.0	
7	0	391.70	24333	5851	1.20	771.69	4.52E+00	1.69E+00	0.9	
8	0	514.06	14116	4868	1.28	1017.85	3.52E+00	9.80E-01	1.3	
9	0	661.65	58552	5074	1.46	1314.80	2.76E+00	4.07E+00	0.5	
10	0	814.01	328	2126	1.39	1621.33	2".25E+00	2.28E-02	25.9	
	0	898.02	29394	4236		1790.38	2.03E+00	2.04E+00	0.8	
11	0	1173.19	42934	2084		2344.08		2.98E+00	0.5	
12	0	1332.45	37534	1525	1.96			2.61E+00	0.6	
13	•		16498	472		3678.18		1.15E+00	0.9	
14	0	1836.03	10420	71/2	2 . 2 /	50,5.10				

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 15:32:31.22 TBE02 51-TP42214B HpGe ****** Aquisition Date/Time: 18-DEC-2019 18:27:24.76

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Sample Type : STD Geometry : 02S25121819
Quantity : 1.00000E+00 TOTAL BKGFILE : 02BG112719MT
Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 04:00:55.90
End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 04:00:00.00

End Channel: 4090 Pk Srch Sens: 9.00000 Liv MDA Multiple: 4.6600 Library Used: CALIBRATION Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	88.00*	37869	11475	0.91	160.79	9.51E+00		0.8	
2	0	122.02	30362	9762	0.98	229.23	1.02E+01	2.11E+00	0.9	
3	0	136.42	3890	6454	1.03	258,18	9.85E+00	2.70E-01	4.1	
4	0	165.86	18919	7972	1.06	317.42	8.96E+00	1.31E+00	1.2	
5	0	255.18	1383	5277	1.23	497.07	6.55E+00	9.60E-02	9.9	
6	0	279.23	5403	5694	1.14	545.46	6.07E+00	3.75E-01	3.0	
7	0	391.70	24333	5851	1.20	771.69	4.52E+00	1.69E+00	0.9	
8	0	514.06	14116	4868	1.28	1017.85	3.52E+00	9.80E-01	1.3	
9	0	661.65	58552	5074	1.46	1314.80	2.76E+00		0.5	
10	0	814.01	328	2126	1.39	1621.33	2,25E+00	2.28E-02	25.9	
11	0	898.02	29394	4236	1.63	1790.38	2.03E+00	2.04E+00	0.8	
12	0	1173.19	42934	2084	1.83	2344.08	1.55E+00	2.98E+00	0.5	
	-	1332.45	37534	1525	1.96		1.37E+00	2.61E+00	0.6	
13	0		16498	472	2.27		1.05E+00		0.9	
14	0	1836.03	10470	4/4	4.41	5070.20	1,001,00		• •	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type:
---------	-------

1,401140 1	r - ·				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	37869	3.72*	9.511E+00	7.433E+02	1.003E+03	1.51
	122.06	30362	85.51*	1.015E+01	2.428E+01	4.054E+01	1.74
03-CO57		18919	80.35*	8.962E+00	1.824E+01	5.003E+01	2.34
04-CE139	165.85		81.46*	6.074E+00	7.583E+00	1.492E+02	5.90
05-HG203	279.20	5403	· ·	4.516E+00	5.766E+01	1.927E+02	1.82
06-SN113	391.69	24333	64.90*			2.391E+02	2.63
07-SR85	513.99	14116	99.27*	3.516E+00		1.753E+02	0.99
08-CS137	661.65	58552	85.12*	2.760E+00			1.53
09-Y88	898.02	29394	93.40*	2.034E+00		3.951E+02	
10-CO60	1173,22	42934	100.00	1.554E+00		2.062E+02	1.08
10 0000	1332.49	37534	100.00*	1.374E+00	1.898E+02	2.040E+02	1.14
12-Y88	1836.01	16498	99.38*	1.053E+00	1.095E+02	4.025E+02	1.70

Summary of Nuclide Activity Page: 2
Sample ID: 02S25121819 Acquisition date: 18-DEC-2019 18:27:24

Total number of lines in spectrum 14
Number of unidentified lines 3
Number of lines tentatively identified by NID 11

78.57%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	$\mathtt{BQ/TOTAL}$ "	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.433E+02	1.003E+03	0.015E+03	1.51
03-CO57	270.90D	1.67	2.428E+01	4.054E+01	0.070E+01	1.74
04-CE139	137.66D	2.74	1.824E+01	5.003E+01	0.117E+01	2.34
05-HG203	46.61D	19.7	7.583E+00	1.492E+02	0.088E+02	5.90
06-SN113	115.10D	3.34	5.766E+01	1.927E+02	0.035E+02	1.82
07-SR85	64.84D	8.51	2.809E+01	2.391E+02	0.063E+02	2.63
08-CS137	30.17Y	1.01	1.731E+02	1.753E+02	0.017E+02	0.99
09-Y88	106.65D	3.68	1.074E+02	3.951E+02	0.060E+02	1.53
1.0-CO60	5.27Y	1.07	1.898E+02	2.040E+02"	0.023E+02	1.14
12-Y88	106.65D	3.68	1.095E+02	4.025E+02	0.069E+02	1.70
12-100	100.032	3.00				
	Total Act	ivity :	1.459E+03	2.852E+03		

Grand Total Activity: 1.459E+03 2.852E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 02S25121819 Page: 3
Acquisition date: 18-DEC-2019 18:27:24

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	136.42 255.18 814.01	3890 1383 328	6454 5277 2126	1.23	497.07	493	9	2.70E-01 9.60E-02 2.28E-02	19.7	6.55E+00)

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14
Number of unidentified lines 3
Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

2,0,0,0,0,0	7 L		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags	
02-CD109	462.90D	1.35	7.433E+02	1.003E+03	0.015E+03	1.51	
03-CO57	270.90D	1.67	2.428E+01	4.054E+01.	0.070E+01	1.74	
04-CE139	137.66D	2.74	1.824E+01	5.003E+01	0.117E+01	2.34	
05-HG203	46.61D	19.7	7.583E+00	1.492E+02	0.088E+02	5.90	
06-SN113	115.10D	3.34	5.766E+01	1.927E+02	0.035E+02	1.82	
07-SR85	64.84D	8.51	2.809E+01	2.391E+02	0.063E+02	2.63	
08-CS137	30.17Y	1.01	1.731E+02	1.753E+02	0.017E+02	0.99	
09-Y88	106.65D	3.68	1.074E+02	3.951E+02	0.060E+02	1.53	
1.0-CO60	5,27Y	1.07	1.909E+02	2.051E+02	0.016E+02	0.78	
10-C080 12-Y88	106.65D	3.68	1.095E+02	4.025E+02	0.069E+02	1.70	
12-100	100.000	5.00					
	Total Act:	ivity :	1.460E+03	2.853E+03			

Grand Total Activity: 1.460E+03 2.853E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109 03-C057 04-CE139 05-HG203 06-SN113 07-SR85	1.003E+03 4.054E+01 5.003E+01 1.492E+02 1.927E+02 2.391E+02 1.753E+02	1.518E+01 7.037E-01 1.169E+00 8.804E+00 3.513E+00 6.279E+00 1.735E+00	9.288E+00 4.185E-01 8.113E-01 8.128E+00 2.198E+00 4.569E+00 7.369E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	108.029 96.891 61.669 18.357 87.654 52.341 237.891

09-Y88 10-CO60 12-Y88	3.951E+02 2.051E+02 4.025E+02	6.045E+00 1.607E+00 6.851E+00	3.245E+00 8.533E-01 1.857E+00	0.000E+00 0.000E+00 0.000E+00	121.744 240.402 216.801
Non-Id	entified Nuclides				
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	-5.736E-01	7.199E-01	1.117E+00	0.000E+00	-0.513

```
,12/26/2019 15:32,06/01/2019 12:00,
                                                            1.000E+00,S25 5ML MIXED
A,02S25121819
                                          ,12/26/2019 15:31,02S25121819
                   , CALIBRATION
B,02S25121819
                                                              108.029
                                 1.518E+01,
                                               9.288E+00,,
                   1.003E+03,
C, 02-CD109, YES,
                                                4.185E-01,,
                                                               96.891
                                 7.037E-01,
C,03-CO57 ,YES,
                   4.054E+01,
                                                               61,669
                                                8.113E-01,,
C,04-CE139,YES,
                   5.003E+01,
                                 1.169E+00,
                                                               18.357
                   1.492E+02,
                                 8.804E+00,
                                                8.128E+00,,
C, 05-HG203, YES,
                                                               87.654
                                                2.198E+00,,
                   1.927E+02,
                                 3.513E+00,
C, 06-SN113, YES,
                                                               52.341
                                 6.279E+00,
                                                4.569E+00,,
                   2.391E+02,
C,07-SR85 ,YES,
                                 1.735E+00,
                                                7.369E-01,,
                                                              237.891
                   1.753E+02,
C,08-CS137,YES,
                                                              121.744
                                                3.245E+00,,
                   3.951E+02,
                                  6.045E+00,
C,09-Y88
          ,YES,
                                                8.533E-01,,
                                                              240.402
                                  1.607E+00,
                   2.051E+02,
C, 10-CO60 , YES,
                                                1.857E+00,,
                                                              216.801
                                  6.851E+00,
C, 12-Y88 , YES,
                   4.025E+02,
                                                1.117E+00,,
                                                               -0.513
                  -5.736E-01,
                                  7.199E-01,
C,01-AM241,NO,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

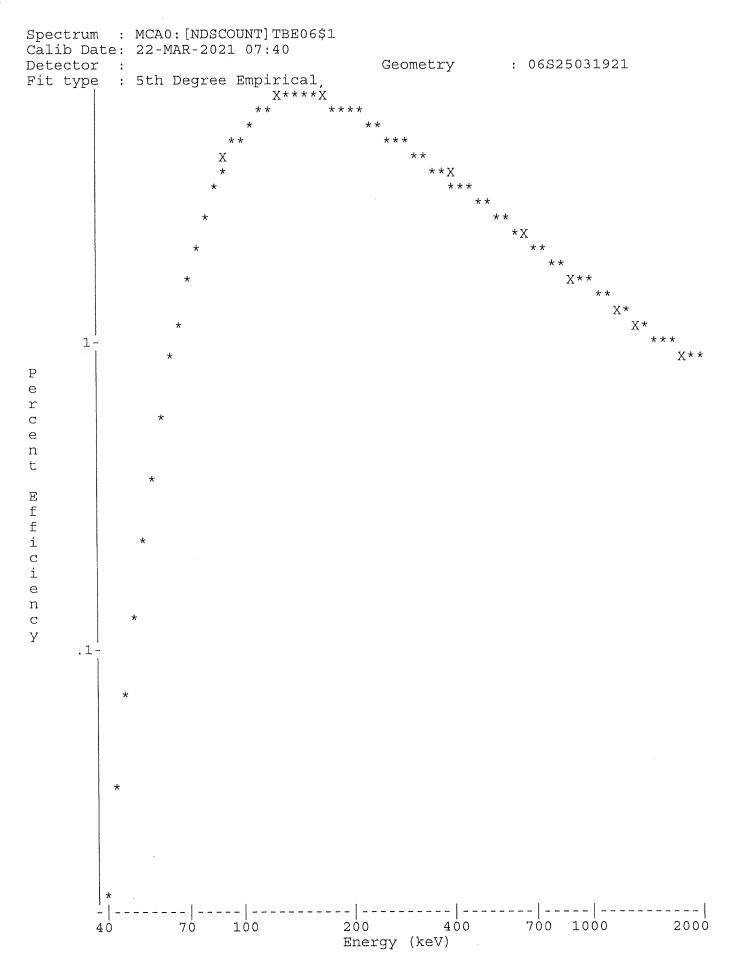
		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Pb-210	22.26Y	46.6	72.1		4.18%	762.12	31.86		
Cd-109	462.9d	0.88	84.75		3.72%	1006.61	37.45	1009.0	0.24%
Co-57	271.8d	122.1	77,25		85.51%	39.92	34.13	40.0	0.29%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	50.8	-0.32%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62		
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	190.1	-0.28%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08		
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	173.6	1.16%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	396.4	-2.42%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	203.4	-0.01%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	205.4	0.86%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	401.9	-0.44%

Eff. Name: 06S25031921

Analyst: KO

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 22-MAR-2021 07:40:38.83 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 19-MAR-2021 14:45:58.43

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION


: 06S25031921 Smple Date: 1-JUN-2019 12:00:00.0 Sample ID

Sample Type : STD Geometry : 06S25031921

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

Peak Evaluation - Identified and Unidentified

		MANUAL MA	-							
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.49	1952	34584	0.92	93.80	9.94E-02	8.39E-03	14.5	
2	0	74.78	1441	47490	0.94	150.37	2.39E+00	6.19E-03	25.2	
3	0	88.01	128267	68527	0.97	176.82	3.94E+00	5.51E-01	0.5	
4	0	122.05	92059	59957	0.99	244.90	6,23E+00	3.96E-01	0.6	
5	0	136.44	11811	51850	1.00	273.67	6.50E+00	5.07E-02	3.6	
6	0	165.86	22108	55027	1.10	332.52	6.41E+00	9.50E-02	2.1	
7	0	391.75	19042	41769	1.19	784.24	3.50E+00	8.18E-02	2.1	
8	0	510.77	4028	39854	2.05	1022.23	2.78E+00	1.73E-02	9.7	
9	0	609.07	1127	19831	1.79	1218.80	2.38E+00	4.84E-03	21.8	
10	0	661.61	730914	38504	1.41	1323.85	2.21E+00	3.14E+00	0.1	
11	0	898.04	19946	33401	1.55	1796.59	1.67E+00	8.57E-02	2.0	
12	0	1173.20	485697	20164	1.69	2346.73	1.30E+00	2.09E+00	0.2	
13	0	1332.49	437484	6704	1.77	2665.19	1.16E+00	1.88E+00	0.2	
14	0	1460.73	1780	2060	2.03	2921.57	1.07E+00	7.65E-03	5.8	
15	0	1836.01	11866	1676	2.05	3671.75	9.22E-01	5.10E-02	1.2	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 22-MAR-2021 07:41:45.73 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 19-MAR-2021 14:45:58.43

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Sample Type : STD Geometry : 06S25031921

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

 Start Channel: 80
 Energy Tol: 2.00000
 Real Time: 2 16:43:37.11

 End Channel: 4090
 Pk Srch Sens: 9.00000
 Live time: 2 16:39:12.77

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.49	1952	34584	0.92	93.80	9.94E-02	8.39E-03	14.5	
2	0	74.78	1441	47490	0.94	150.37	2.39E+00	6.19E-03	25.2	
3	0	88.01	128267	68527	0.97	176.82	3.94E+00	5.51E-01	0.5	
4	0	122.05	92059	59957	0.99	244.90	6.23E+00	3.96E-01	0.6	
5	0	136.44	11811	51850	1.00	273.67	6.50E+00	5.07E-02	3.6	
6	0	165.86	22108	55027	1,10	332.52	6.41E+00	9.50E-02	2.1	
7	0	391.75	19042	41769	1.19	784.24	3.50E+00	8.18E-02	2.1	
8	0	510.77	4028	39854	2.05	1022.23	2.78E+00	1.73E-02	9.7	
9	. 0	609.07	1127	19831	1.79	1218.80	2.38E+00	4.84E-03	21.8	
10	0	661.61	730914	38504	1.41	1323.85	2.21E+00	3.14E+00	0.1	
11	0	898.04	19946	33401	1.55	1796.59	1.67E+00	8.57E-02	2.0	
12	0	1173.20	485697	20164	1.69	2346.73	1.30E+00	2.09E+00	0.2	
13	0	1332.49	437484	6704	1.77	2665.19	1.16E+00	1.88E+00	0.2	
14	0	1460.73	1780	2060	2.03	2921.57	1.07E+00	7.65E-03	5.8	
15	0	1836.01	11866	1676	2.05	3671.75	9.22E-01	5.10E-02	1.2	

Nuclide Line Activity Report

Nuclide Type:

				Uncorrected	Decay Corr	2-Sigma
Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
88.03	128267	3.72*	3.936E+00	3.764E+02	1.009E+03	0.95
122.06	92059	85.51*	6.230E+00	7.425E+00	4.003E+01	1.19
165.85	22108	80.35*	6.407E+00	1.845E+00	5.080E+01	4.19
391.69	19042	64.90*	3.498E+00	3.604E+00	1.901E+02	4.13
661.65	730914	85.12*	2.215E+00	1.666E+02	1.736E+02	0.26
898.02	19946	93.40*	1.671E+00	5.490E+00	3.964E+02	3.93
1173.22	485697	100.00	1.301E+00	1.604E+02	2.034E+02	0.32
1332.49	437484	100.00*	1.160E+00	1.620E+02	2.054E+02	0.31
1836.01	11866	99.38*	9.216E-01	5.566E+00	4.019E+02	2.47
	88.03 122.06 165.85 391.69 661.65 898.02 1173.22 1332.49	88.03 128267 122.06 92059 165.85 22108 391.69 19042 661.65 730914 898.02 19946 1173.22 485697 1332.49 437484	88.03 128267 3.72* 122.06 92059 85.51* 165.85 22108 80.35* 391.69 19042 64.90* 661.65 730914 85.12* 898.02 19946 93.40* 1173.22 485697 100.00 1332.49 437484 100.00*	88.03 128267 3.72* 3.936E+00 122.06 92059 85.51* 6.230E+00 165.85 22108 80.35* 6.407E+00 391.69 19042 64.90* 3.498E+00 661.65 730914 85.12* 2.215E+00 898.02 19946 93.40* 1.671E+00 1173.22 485697 100.00 1.301E+00 1332.49 437484 100.00* 1.160E+00	Energy Area %Abn %Eff BQ/TOTAL 88.03 128267 3.72* 3.936E+00 3.764E+02 122.06 92059 85.51* 6.230E+00 7.425E+00 165.85 22108 80.35* 6.407E+00 1.845E+00 391.69 19042 64.90* 3.498E+00 3.604E+00 661.65 730914 85.12* 2.215E+00 1.666E+02 898.02 19946 93.40* 1.671E+00 5.490E+00 1173.22 485697 100.00 1.301E+00 1.604E+02 1332.49 437484 100.00* 1.160E+00 1.620E+02	88.03 128267 3.72* 3.936E+00 3.764E+02 1.009E+03 122.06 92059 85.51* 6.230E+00 7.425E+00 4.003E+01 165.85 22108 80.35* 6.407E+00 1.845E+00 5.080E+01 391.69 19042 64.90* 3.498E+00 3.604E+00 1.901E+02 661.65 730914 85.12* 2.215E+00 1.666E+02 1.736E+02 898.02 19946 93.40* 1.671E+00 5.490E+00 3.964E+02 1173.22 485697 100.00 1.301E+00 1.604E+02 2.034E+02 1332.49 437484 100.00* 1.160E+00 1.620E+02 2.054E+02

Summary of Nuclide Activity Sample ID: 06S25031921

Page: 2
-Acquisition date: 19-MAR-2021 14:45:58

Total number of lines in spectrum Number of unidentified lines

15 6

Number of lines tentatively identified by NID 9

60.00%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	2.68	3.764E+02	1.009E+03	0.001E+04	0.95
03-CO57	270.90D	5.39	7.425E+00	4.003E+01	0.048E+01	1.19
04-CE139	137.66D	27.5	1.845E+00	5.080E+01	0.213E+01	4.19
06-SN113	115.10D	52.7	3.604E+00	1.901E+02	0.079E+02	4.13
08-CS137	30.17Y	1.04	1.666E+02	1.736E+02	0.005E+02	0.26
09-Y88	106.65D	72.2	5.490E+00	3.964E+02	0.156E+02	3.93
10-CO60	5.27Y	1.27	1.620E+02	2.054E+02	0.006E+02	0.31
12-Y88	106.65D	72.2	5.566E+00	4.019E+02	0.099E+02	2.47

Total Activity: 7.289E+02 2.467E+03

Grand Total Activity : 7.289E+02 2.467E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 06S25031921 Page: 3
Acquisition date: 19-MAR-2021 14:45:58

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	lags
. 0	46.49	1952	34584	0.92	93.80	92	5	8.39E-03	29.0	9.94E-02	
0	74.78	1441	47490	0.94	150.37	148	7	6.19E-03	50.4	2.39E+00	
0	136.44	11811	51850	1.00	273.67	270	9	5.07E-02	7.2	6.50E+00	
0	510.77	4028	39854	2.05	1022.23	1017	11	1.73E-02	19.4	2.78E+00	
0	609.07	1127	19831	1.79	1218.80	1216	8	4.84E-03	43.6	2.38E+00	
0	1460.73	1780	2060	2.03	2921.57	2915	13	7.65E-03	11.5	1.07E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 15
Number of unidentified lines 6
Number of lines tentatively identified by NID 9 60.00%

Nuclide Type :

	1.		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error F	lags
02-CD109	462.90D	2.68	3.764E+02	1.009E+03	0.001E+04	0.95	
03-CO57	270.90D	5.39	7.425E+00	4.003E+01	0.048E+01	1.19	
04-CE139	137.66D	27.5	1.845E+00	5.080E+01	0.213E+01	4.19	
06-SN113	115.10D	52.7	3.604E+00	1.901E+02	0.079E+02	4.13	
08-CS137	30.17Y	1.04	1.666E+02	1.736E+02	0.005E+02	0.26	
09-Y88	106.65D	72.2	5.490E+00	3.964E+02	0.156E+02	3.93	
10-CO60	5.27Y	1.27	1.620E+02	2.054E+02	0.006E+02	0.31	
12-Y88	106.65D	72.2	5.566E+00	4.019E+02	0.099E+02	2.47	
	Total Act	lvity :	7.289E+02	2.467E+03			

Grand Total Activity : 7.289E+02 2.467E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109 03-CO57 04-CE139 06-SN113 08-CS137 09-Y88	1.009E+03 4.003E+01 5.080E+01 1.901E+02 1.736E+02 3.964E+02	9.567E+00 4.783E-01 2.131E+00 7.858E+00 4.566E-01 1.558E+01	7.229E+00 3.829E-01 1.982E+00 8.714E+00 1.586E-01 1.503E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	139.569 104.556 25.632 21.813 1094.419 26.383

10-CO60	2.054E+02	6.469E-01	1.376E-01	0.000E+00	1492.376
12-Y88	4.019E+02	9.945E+00	5.425E+00	0.000E+00	74.088
Non-Ide	entified Nuclides		•		
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	7.460E-02	7.931E-01	1.344E+00	0.000E+00	0.056
05-HG203	2.768E+02	1.141E+03	1.805E+03	0.000E+00	0.153
07-SR85	4.560E+02	9.668E+01	1.427E+02	0.000E+00	3.195

```
,03/22/2021 07:41,06/01/2019 12:00,
                                                            1.000E+00,S25 5ML MIXED
A,06S25031921
B,06S25031921
                                          ,03/22/2021 07:40,06S25031921
                   , CALIBRATION
                                               7.229E+00,,
C,02-CD109,YES,
                   1.009E+03,
                                 9.567E+00,
                                                             139.569
C,03-CO57 ,YES,
                                               3.829E-01,,
                                                             104.556
                   4.003E+01,
                                 4.783E-01,
                                               1.982E+00,,
                                                              25.632
C,04-CE139,YES,
                   5.080E+01,
                                 2.131E+00,
                                               8.714E+00,,
C, 06-SN113, YES,
                   1.901E+02,
                                 7.858E+00,
                                                              21.813
                                               1.586E-01,, 1094.419
C,08-CS137,YES,
                   1.736E+02,
                                 4.566E-01,
         , YES,
                                                              26.383
C,09-Y88
                   3.964E+02,
                                 1.558E+01,
                                               1.503E+01,,
C, 10-CO60 , YES,
                   2.054E+02,
                                 6.469E-01,
                                               1.376E-01,, 1492.376
C, 12-Y88 , YES,
                                               5.425E+00,,
                   4.019E+02,
                                 9.945E+00,
                                                              74.088
                                 7.931E-01,
                                               1.344E+00,,
                                                               0.056
C,01-AM241,NO,
                   7.460E-02,
C,05-HG203,NO ,
                   2.768E+02,
                                 1.141E+03,
                                               1.805E+03,,
                                                               0.153
                                 9.668E+01,
                                               1.427E+02,,
                                                               3.195
C,07-SR85 ,NO ,
                   4.560E+02,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S50 Bottle

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Pb-210	22.26Y	46.6	72.1		4.18%	762.12	31.86		
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1008.0	0.14%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	39.9	0.01%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	51.0	0.15%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62		
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	188.9	-0.90%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08		
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	174.9	1.92%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	391.6	-3.60%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	204.2	0.38%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	205.1	0.71%
Y-88	106.65d	1836.0	908		99,38%	403.69	401,19	401.9	-0.44%

Eff. Name: 06S50031621

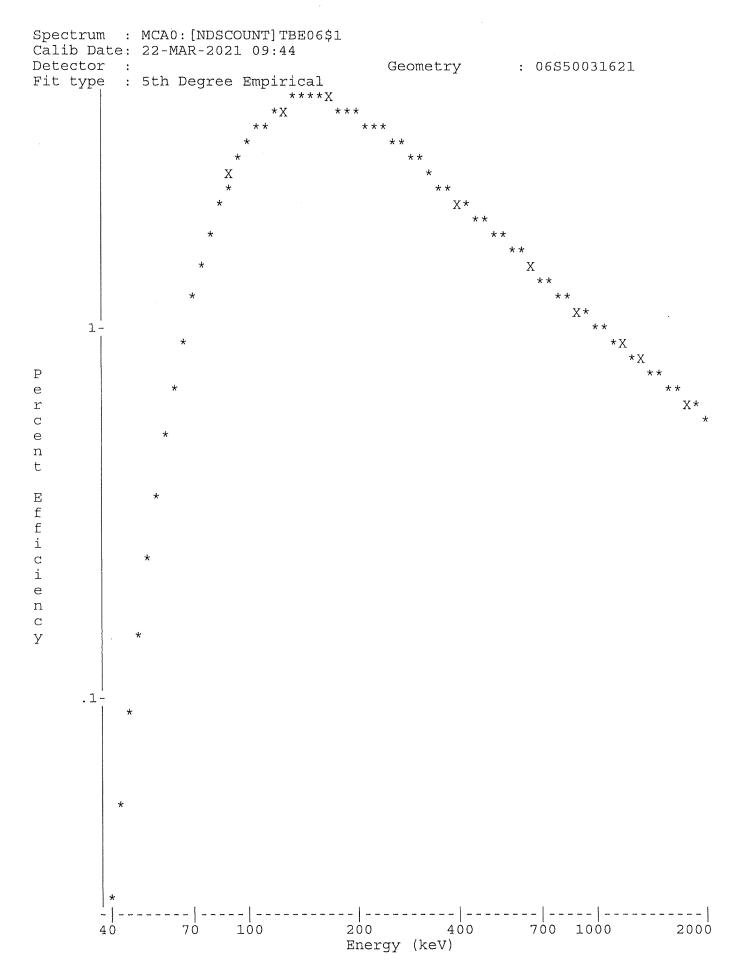
Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 22-MAR-2021 09:44:01.72 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 16-MAR-2021 08:49:41.57

LIMS No., Customer Name, Client ID: S50 5ML MIXED GAMMA CALIBRATION

Sample Type : STD Geometry : 06S50031621

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG


 Start Channel: 80
 Energy Tol: 2.00000 Real Time: 3 07:08:03.15

 End Channel: 4090
 Pk Srch Sens: 9.00000 Live time: 3 07:04:03.86

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

			-							
Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.48	1992	42775	1.15	93.77	1.26E-01	7.00E-03	17.4	
2	0	74.90	1912	30566	1.00	150.61	1,68E+00	6.72E-03	13.9	
3	10	85.40	6727	89463	2.43	171.60	2.42E+00	2.36E-02	10.8	1.56E+01
4	10	88.01	103303	34137	0.96	176.82	2.58E+00	3.63E-01	0.4	
5	0	122.04	72172	54617	0.98	244.87	3.97E+00	2.54E-01	0.7	
6	0	136.46	9186	41242	1.06	273.70	4.17E+00	3.23E-02	4.0	
7	0	165.87	17944	44649	1.12	332.51	4.17E+00	6.30E-02	2.3	
8	0	185.73	1831	37630	1.36	372.23	4.02E+00	6.43E-03	17.7	
9	0	391.74	15588	36578	1.25	784.15	2.31E+00	5.48E-02	2.4	
10	0	510.95	5205	35452	2.11	1022.50	1.83E+00	1.83E-02	7.1	
11	0	661.63	594880	31745	1.41	1323.77	1.46E+00	2.09E+00	0.1	
12	0	898.00	16557	26885	1.57	1796.35	1.13E+00	5.82E-02	2.1	
13	0	1173,22	412497	19014	1.73	2346.57	8.99E-01	1.45E+00	0.2	
14	0	1332.51	372411	5543	1.78	2665.00	8.08E-01	1.31E+00	0.2	
15	0	1460.90	2381	1616	2.06	2921.67	7.48E-01	8.37E-03	4.0	
16	0	1764.40	424	1111	1.61	3528.32	6.43E-01	1.49E-03	17.4	
17	0	1836.00	10002	1215	2.07	3671.44	6.23E-01	3.51E-02	1.3	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 22-MAR-2021 09:48:13.84 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 16-MAR-2021 08:49:41.57

LIMS No., Customer Name, Client ID: S50 5ML MIXED GAMMA CALIBRATION

Sample ID : 06S50031621 Smple Date: 1-JUN-2019 12:00:00.0

Sample Type : STD Geometry : 06S50031621

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

 Start Channel: 80
 Energy Tol: 2.00000 Real Time: 3 07:08:03.15

 End Channel: 4090
 Pk Srch Sens: 9.00000 Live time: 3 07:04:03.86

 MDA Multiple: 4.6600
 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.48	1992	42775	1.15	93.77	1.26E-01	7.00E-03	17.4	
2	0	74.90	1912	30566	1.00	150.61	1.68E+00	6.72E-03	13.9	
3	10	85.40	6727	89463	2.43	171.60	2.42E+00	2.36E-02	10.8	1.56E+01
4	10	88.01	103303	34137	0.96	176.82	2.58E+00	3.63E-01	0.4	
5	0	122.04	72172	54617	0.98	244.87	3.97E+00	2.54E-01	0.7	
6	0	136.46	9186	41242	1.06	273.70	4.17E+00	3.23E-02	4.0	
7	0	165.87	17944	44649	1.12	332.51	4.17E+00	6.30E-02	2.3	
8	0	185.73	1831	37630	1.36	372.23	4.02E+00	6.43E-03	17.7	
9	0	391.74	15588	36578	1.25	784.15	2.31E+00	5.48E-02	2.4	
10	0	510.95	5205	35452	2.11	1022.50	1.83E+00	1.83E-02	7.1	
11	0	661.63	594880	31745	1.41	1323.77	1.46E+00	2.09E+00	0.1	
12	0	898.00	16557	26885	1.57	1796.35	1.13E+00	5.82E-02	2.1	
13	0	1173.22	412497	19014	1.73	2346.57	8.99E-01	1.45E+00	0.2	
14	0	1332.51	372411	5543	1.78	2665.00	8.08E-01	1.31E+00	0.2	
15	0	1460.90	2381	1616	2.06	2921.67	7.48E-01	8.37E-03	4.0	
16	0	1764.40	424	1111	1.61	3528.32	6.43E-01	1.49E-03	17.4	
17	0	1836.00	10002	1215	2.07	3671.44	6.23E-01	3.51E-02	1.3	

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	103303	3.72*	2.584E+00	3.775E+02	1.008E+03	0.85
03-CO57	122.06	72172	85.51*	3.975E+00	7.460E+00	3.992E+01	1.42
04-CE139	165.85	17944	80.35*	4.170E+00	1.881E+00	5.104E+01	4.50
06-SN113	391.69	15588	64.90*	2.315E+00	3.646E+00	1.889E+02	4.71
08-CS137	661.65	594880	85.12*	1.463E+00	1.679E+02	1.749E+02	0.29
09-Y88	898.02	16557	93.40*	1.127E+00	5.528E+00	3.916E+02	4.14
10-CO60	1173.22	412497	100.00	8.986E-01	1.613E+02	2.042E+02	0.35
	1332.49	372411	100.00*	8.076E-01	1.620E+02	2.051E+02	0.34
12-Y88	1836.01	10002	99.38*	6.232E-01	5.674E+00	4.019E+02	2.54

Summary of Nuclide Activity Page: 2
Sample ID: 06S50031621 Acquisition date: 16-MAR-2021 08:49:41

Total number of lines in spectrum 17
Number of unidentified lines 8
Number of lines tentatively identified by NTD 9

Number of lines tentatively identified by NID 9 52.94%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	2.67	3.775E+02	1.008E+03	0.009E+03	0.85
03-CO57	270.90D	5.35	7.460E+00	3.992E+01	0.057E+01	1.42
04-CE139	137.66D	27.1	1.881E+00	5.104E+01	0.230E+01	4.50
06-SN113	115.10D	51.8	3.646E+00	1.889E+02	0.089E+02	4.71
08-CS137	30.17Y	1.04	1.679E+02	1.749E+02	0.005E+02	0.29
09-Y88	106.65D	70.8	5.528E+00	3.916E+02	0.162E+02	4.14
10-CO60	5.27Y	1.27	1.620E+02	2.051E+02	0.007E+02	0.34
12-Y88	106.65D	70.8	5.674E+00	4.019E+02	0.102E+02	2.54

Total Activity: 7.316E+02 2.461E+03

Grand Total Activity: 7.316E+02 2.461E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 06S50031621 Page: 3
Acquisition date: 16-MAR-2021 08:49:41

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff]	Flags
0	46.48 74.90	1992 1912	42775 30566	1.15 1.00	93.77 150.61	91 149		7.00E-03 6.72E-03		1.26E-01 1.68E+00	
10	85.40	6727	89463	2.43	171.60	164	18	2.36E-02	21.6	2.42E+00	
0	136.46	9186	41242	1.06	273.70	270	8	3.23E-02	7.9	4.17E+00	
0	185.73	1831	37630	1.36	372.23	370	7	6.43E-03	35.4	4.02E+00	
0	510.95	5205	35452	2.11	1022.50	1017	11	1.83E-02	14.3	1.83E+00	
0	1460.90	2381	1616	2.06	2921.67	2915	13	8.37E-03	8.1	7.48E-01	
0	1764.40	424	1111	1.61	3528.32	3522	14	1.49E-03	34.7	6.43E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 17
Number of unidentified lines 8
Number of lines tentatively identified by NID 9

52.94%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	2.67	3.775E+02	1.008E+03	0.009E+03	0.85
03-CO57	270.90D	5.35	7.460E+00	3.992E+01	0.057E+01	1.42
04-CE139	137.66D	27.1	1.881E+00	5.104E+01	0.230E+01	4.50
06-SN113	115.10D	51.8	3.646E+00	1.889E+02	0.089E+02	4.71
08-CS137	30.17Y	1.04	1.679E+02	1.749E+02	0.005E+02	0.29
09-Y88	106.65D	70.8	5.528E+00	3.916E+02	0.162E+02	4.14
10-CO60	5.27Y	1.27	1.616E+02	2.047E+02	0.005E+02	0.24
12-Y88	106.65D	70.8	5.674E+00	4.019E+02	0.102E+02	2.54
	Total Act	ivity :	7.312E+02	2.460E+03		

Grand Total Activity: 7.312E+02 2.460E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109	1.008E+03	8.546E+00	8.191E+00	0.000E+00	123.002
03-CO57	3.992E+01	5.681E-01	4.654E-01	0.000E+00	85.778
04-CE139	5.104E+01	2.299E+00	2.363E+00	0.000E+00	21.597
06-SN113	1.889E+02	8.890E+00	9.893E+00	0.000E+00	19.094

08-CS137 09-Y88 10-CO60 12-Y88	1.749E+02 3.916E+02 2.047E+02 4.019E+02	5.077E-01 1.620E+01 5.012E-01 1.019E+01	1.849E-01 1.675E+01 1.475E-01 5.711E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	946.222 23.380 1387.846 70.369
Non-Id	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241 05-HG203 07-SR85	-4.434E-01 6.524E+02 5.684E+02	7.290E-01 1.179E+03	1.230E+00 2.003E+03 1.632E+02	0.000E+00 0.000E+00 0.000E+00	-0.360 0.326 3.483

```
,03/22/2021 09:48,06/01/2019 12:00, 1.000E+00,S50 5ML MIXED
A,06S50031621
                                         ,03/22/2021 09:44,06S50031621
                   , CALIBRATION
B,06S50031621
                                              8.191E+00,,
                                                            123.002
C,02-CD109,YES,
                   1.008E+03,
                                8.546E+00,
                                              4.654E-01,,
                                5.681E-01,
                                                             85.778
C,03-CO57 ,YES,
                   3.992E+01,
                                              2.363E+00,,
                                                             21.597
C,04-CE139,YES,
                                2.299E+00,
                   5.104E+01,
                                                             19.094
                                              9.893E+00,,
C,06-SN113,YES,
                   1.889E+02,
                                8.890E+00,
                                              1.849E-01,,
                                5.077E-01,
                                                            946.222
C,08-CS137,YES,
                   1.749E+02,
                                              1.675E+01,,
                                                             23.380
         , YES,
                                1.620E+01,
C,09-Y88
                   3.916E+02,
                                              1.475E-01,, 1387.846
C,10-CO60 ,YES,
                   2.047E+02,
                                 5.012E-01,
C,12-Y88 ,YES,
                                              5.711E+00,,
                                                             70.369
                   4.019E+02,
                                 1.019E+01,
                                              1.230E+00,,
                                                             -0.360
C,01-AM241,NO ,
                  -4.434E-01,
                                7.290E-01,
                                              2.003E+03,,
C,05-HG203,NO,
                  6.524E+02,
                                1.179E+03,
                                                              0.326
                   5.684E+02,
                                1.104E+02,
                                              1.632E+02,,
                                                              3.483
C,07-SR85 ,NO ,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

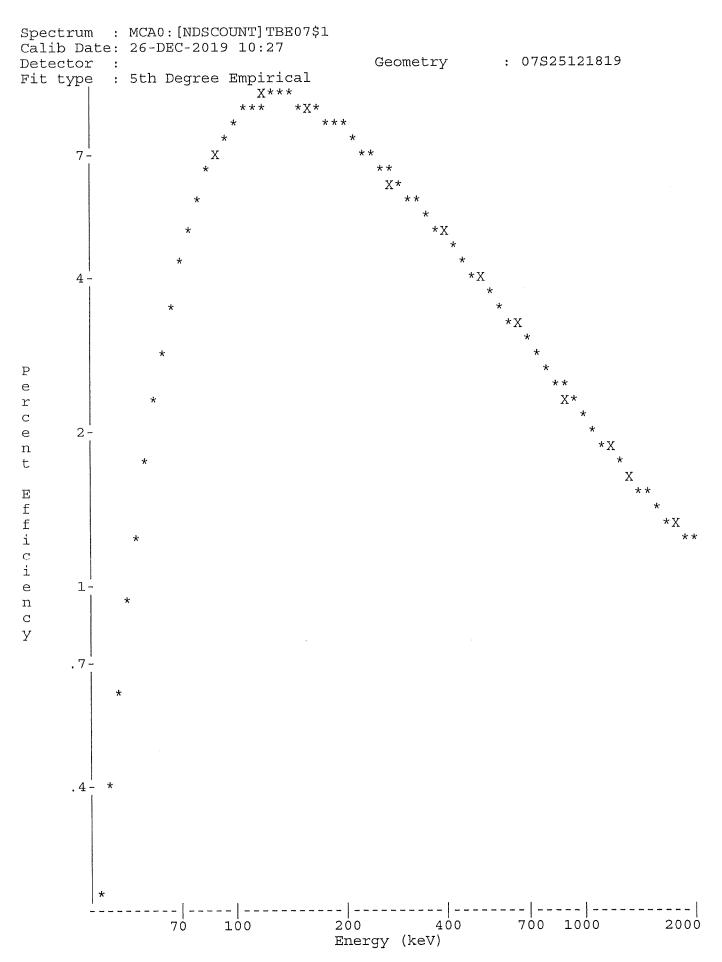
		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1005.0	-0.16%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.0	0.14%
Ce-139	137.64d	165.9	92,68		80.35%	50.96	40.95	50.9	-0.05%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	143.3	-8.17%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	191.3	0.35%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	247.8	0.72%
Cs-137	30.17y	661.6	330,6		85.12%	171.61	146.07	173.9	1.34%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	390.3	-3.92%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	204.9	0.73%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	207.6	1.94%
Y-88	106.65d	1836.0	908		99,38%	403.69	401.19	401.3	-0.59%

Eff. Name: 07S25121819

Analyst:

KOJ

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 10:27:43.64 TBE07 31-TP10768B HpGe ****** Aquisition Date/Time: 18-DEC-2019 14:56:31.96


LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Sample Type : STD Geometry : 07S25121819
Quantity : 1.00000E+00 TOTAL BKGFILE : 07BG112719MT
Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 02:17:08.44
End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 02:16:43.01

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.64	773	4715	1.33	92.73	7.18E-01	9.43E-02	16.4	7.52E-01
2	1	88.05	15405	5939	1.26	175.52	6.78E+00	1.88E+00	1.3	5.87E-01
3	1	122.07	14618	4613	1,29	243,53	8.70E+00	1.78E+00	1.2	6.83E-01
4	1	136.44	2070	4130	1,47	272.27	8.80E+00	2.52E-01	6.2	4.05E+00
5	1	165.84	10361	5634	1.38	331.06	8.46E+00	1.26E+00	1.8	1.03E+00
6	1	255,21	771	3174	1.55	509.71	6.63E+00	9.39E-02	13.6	2.09E+00
7	1	279,18	3032	3952	1.44	557.65	6.21E+00	3.70E-01	4.5	4.54E-01
8	1	391.68	14556	3443	1.54	782.53	4.77E+00	1.77E+00	1.2	1.82E+00
9	1	514.00	9029	3517	1.66	1027.05	3.80E+00	1.10E+00	1.8	4.47E+00
10	1	661.65	36547	2915	1.77	1322,19	3.05E+00	4.46E+00	0.6	4.17E+00
11	1	898.04	18756	2766	2.00	1794.67	2.30E+00	2.29E+00	1.0	6.67E+00
12	1	1173.22	28118	1516	2,24	2344.63	1.80E+00	3.43E+00	0.7	5.22E+00
13	1	1332.48	25432	837	2.41	2662.88	1.60E+00	3,10E+00	0.7	1.02E+01
14	1	1836.00	11248	356	2.94	3668.97	1.26E+00	1.37E+00	1.0	1.21E+01

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 10:29:22.88 TBE07 31-TP10768B HpGe ****** Aquisition Date/Time: 18-DEC-2019 14:56:31.96

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 07S25121819

 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 07BG112719MT

 Start Channel
 : 80
 Energy Tol
 : 2.00000
 Real Time
 : 0 02:17:08.44

 End Channel
 : 4090
 Pk Srch Sens
 9.00000
 Live time
 : 0 02:16:43.01

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.64	773	4715	1.33	92.73	7.18E-01	9.43E-02	16.4	7.52E-01
2	1	88.05	15405	5939	1.26	175.52	6.78E+00	1.88E+00	1.3	5.87E-01
3	1	122.07	14618	4613	1.29	243.53	8.70E+00	1.78E+00	1.2	6.83E-01
4	1	136.44	2070	4130	1.47	272.27	8.80E+00	2.52E-01	6.2	4.05E+00
5	1	165.84	10361	5634	1.38	331.06	8.46E+00	1.26E+00	1.8	1.03E+00
6	1	255.21	771	3174	1.55	509.71	6.63E+00	9.39E-02	13.6	2.09E+00
7	1	279.18	3032	3952	1.44	557.65	6.21E+00	3.70E-01	4.5	4.54E-01
8	1	391.68	14556	3443	1.54	782.53	4.77E+00	1.77E+00	1.2	1.82E+00
9	1	514.00	9029	3517	1.66	1027.05	3.80E+00	1.10E+00	1.8	4.47E+00
10	1	661.65	36547	2915	1.77	1322.19	3.05E+00	4.46E+00	0.6	4.17E+00
11	1	898.04	18756	2766	2.00	1794.67	2.30E+00	2.29E+00	1.0	6.67E+00
12	1	1173.22	28118	1516	2.24	2344.63	1.80E+00	3.43E+00	0.7	5.22E+00
13	1	1332.48	25432	837	2.41	2662.88	1.60E+00	3.10E+00	0.7	1.02E+01
14	1	1836.00	11248	356	2.94	3668.97	1.26E+00	1.37E+00	1.0	1.21E+01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

•					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	15405	3.72*	6.778E+00	7.448E+02	1.005E+03	2.55
03-CO57	122.06	14618	85.51*	8.701E+00	2.395E+01	3.997E+01	2.41
04-CE139	165.85	10361	80.35*	8.456E+00	1.859E+01	5.094E+01	3.65
05-HG203	279.20	3032	81.46*	6.215E+00	7.301E+00	1.433E+02	9.06
06-SN113	391.69	14556	64.90*	4.771E+00	5.731E+01	1.913E+02	2.31
07-SR85	513.99	9029	99.27*	3.802E+00	2.916E+01	2.478E+02	3.62
08-CS137	661.65	36547	85.12*	3.048E+00	1.717E+02	1.739E+02	1.24
09-Y88	898.02	18756	93.40*	2.304E+00	1.063E+02	3.903E+02	1.95
10-CO60	1173.22	28118	100.00	1.798E+00	1.907E+02	2.049E+02	1.37
	1332.49	25432	100.00*	1.605E+00	1.932E+02	2.076E+02	1.39
12-Y88	1836.01	11248	99.38*	1.263E+00	1.093E+02	4.013E+02	2.07

Summary of Nuclide Activity Page: 2
Sample ID: 07S25121819 Acquisition date: 18-DEC-2019 14:56:31

Total number of lines in spectrum 14
Number of unidentified lines 3
Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.448E+02	1.005E+03	0.026E+03	2.55
03-CO57	270,90D	1.67	2.395E+01	3.997E+01	0.096E+01	2.41
04-CE139	137.66D	2.74	1.859E+01	5.094E+01	0.186E+01	3.65
05-HG203	46.61D	19.6	7.301E+00	1,433E+02	0.130E+02	9.06
06-SN113	115,10D	3.34	5.731E+01	1.913E+02	0.044E+02	2.31
07-SR85	64.84D	8.50	2.916E+01	2.478E+02	0.090E+02	3.62
08-CS137	30.17Y	1.01	1.717E+02	1.739E+02	0.022E+02	1.24
09-Y88	106.65D	3.67	1.063E+02	3.903E+02	0.076E+02	1.95
10-CO60	5.27Y	1.07	1.932E+02	2.076E+02	0.029E+02	1.39
12-Y88	106.65D	3.67	1.093E+02	4.013E+02	0.083E+02	2.07
	Total Acti	ivity :	1.462E+03	2.852E+03		

Grand Total Activity: 1.462E+03 2.852E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 07S25121819 Page: 3
Acquisition date: 18-DEC-2019 14:56:31

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	46.64 136.44 255.21	2070	4130	1.47	272,27	267	10	2.52E-01	12.4	7.18E-01 8.80E+00 6.63E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14
Number of unidentified lines 3
Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.448E+02	1.005E+03	0.026E+03	2.55
03-CO57	270.90D	1.67	2.395E+01	3.997E+01	0.096E+01	2.41
04-CE139	137.66D	2.74	1.859E+01	5.094E+01	0.186E+01	3.65
05-HG203	46.61D	19.6	7,301E+00	1.433E+02	0.130E+02	9.06
06-SN113	115.10D	3.34	5.731E+01	1.913E+02	0.044E+02	2.31
07-SR85	64.84D	8,50	2.916E+01	2.478E+02	0.090E+02	3.62
08-CS137	30.17Y	1.01	1.717E+02	1,739E+02	0.022E+02	1.24
09-Y88	106.65D	3.67	1.063E+02	3.903E+02	0.076E+02	1.95
10-CO60	5.27Y	1.07	1.919E+02	2.062E+02	0.020E+02	0.97
12-Y88	106.65D	3.67	1.093E+02	4.013E+02	0.083E+02	2.07

Total Activity: 1.460E+03 2.850E+03

Grand Total Activity: 1.460E+03 2.850E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109 03-CO57 04-CE139 05-HG203 06-SN113 07-SR85 08-CS137	1.005E+03 3.997E+01 5.094E+01 1.433E+02 1.913E+02 2.478E+02	2.559E+01 9.624E-01 1.861E+00 1.298E+01 4.427E+00 8.982E+00 2.157E+00	1.912E+01 7.562E-01 1.275E+00 1.199E+01 3.216E+00 6.105E+00 1.016E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	52.567 52.860 39.947 11.946 59.495 40.592 171.218

L95403 76 of 332

09-Y88 10-CO60 12-Y88	3.903E+02 2.062E+02 4.013E+02	7.605E+00 2.009E+00 8.294E+00	4.371E+00 1.090E+00 2.498E+00	0.000E+00 0.000E+00 0.000E+00	89.291 189.159 160.653
Non-Ide	ntified Nuclides				
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	4.223E-01	2.177E+00	3.537E+00	0.000E+00	0.119

```
,12/26/2019 10:29,06/01/2019 12:00,
                                                           1.000E+00,S25 5ML MIXED
A,07S25121819
                                         ,12/26/2019 10:27,07S25121819
                   , CALIBRATION
B,07S25121819
                   1.005E+03,
                                 2.559E+01,
                                               1.912E+01,,
                                                              52.567
C,02-CD109,YES,
                                                              52.860
C,03-CO57 ,YES,
                   3.997E+01,
                                 9.624E-01,
                                               7.562E-01,
C,04-CE139,YES,
                   5.094E+01,
                                 1.861E+00,
                                               1.275E+00,,
                                                              39.947
                                               1.199E+01,,
                                                              11.946
C, 05-HG203, YES,
                   1.433E+02,
                                 1.298E+01,
C,06-SN113,YES,
                   1.913E+02,
                                               3.216E+00,,
                                                              59,495
                                 4.427E+00,
                                               6.105E+00,,
                                                              40.592
C,07-SR85 ,YES,
                   2.478E+02,
                                 8.982E+00,
                                                             171.218
                                 2.157E+00,
                                               1.016E+00,,
C,08-CS137,YES,
                   1.739E+02,
                                                             89.291
C,09-Y88 ,YES,
                   3.903E+02,
                                 7.605E+00,
                                               4.371E+00,,
                                                             189.159
                   2.062E+02,
                                 2.009E+00,
                                               1.090E+00,,
C,10-CO60 ,YES,
                                                            160.653
C,12-Y88 ,YES,
                                               2.498E+00,,
                   4.013E+02,
                                 8.294E+00,
                   4.223E-01,
                                 2.177E+00,
                                               3.537E+00,,
                                                               0.119
C,01-AM241,NO ,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1008.0	0.14%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.1	0.49%
Ce-139	137,64d	165.9	92.68		80.35%	50.96	40.95	50.8	-0.38%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	146.5	-6.12%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	192.2	0.83%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	240.0	-2.45%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	175.4	2.21%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	396.8	-2.32%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	202.8	-0.31%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	206.4	1.35%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	402.2	-0.37%

Eff. Name: 08S25121919

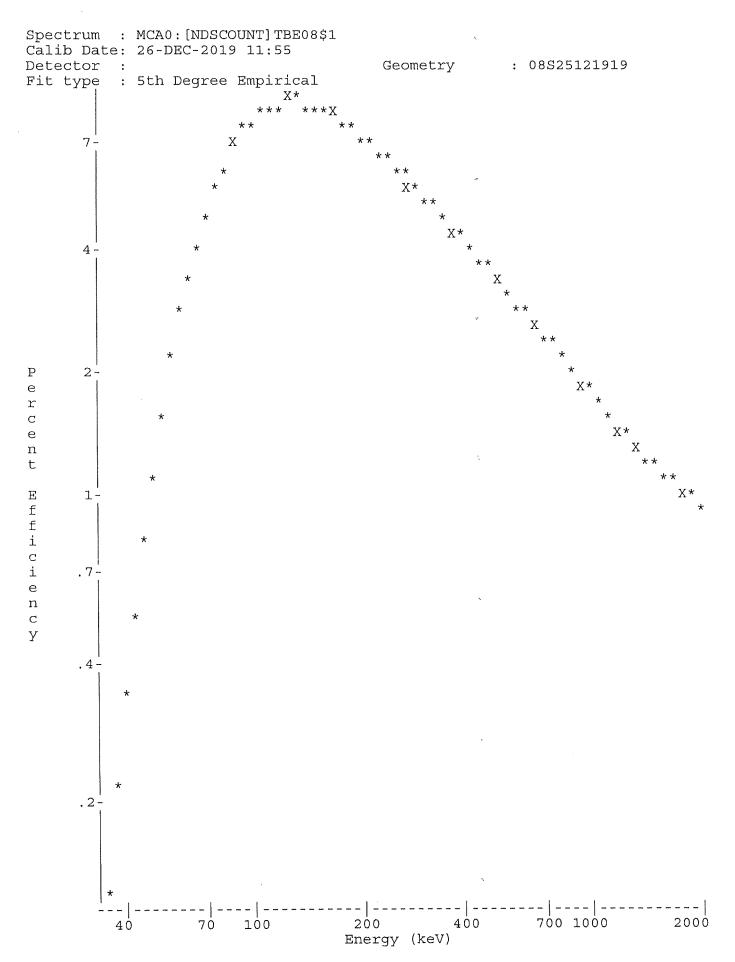
Analyst:

VAN AND THE PROPERTY OF THE PR

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 11:55:49.52 TBE08 31-TP20610B HpGe ******* Aquisition Date/Time: 19-DEC-2019 09:30:14.76

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 08S25121919


 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 08BG112719MT

 Start Channel
 : 80
 Energy Tol
 : 2.00000
 Real Time
 : 0 02:22:09.14

 End Channel
 : 4090
 Pk Srch Sens:
 9.00000
 Live time
 : 0 02:21:40.56

MDA Multiple : 4.6600 Library Used: CALIBRATION Peak Evaluation - Identified and Unidentified

			_							
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.22	968	4222	1.09	100.32	7.97E-01	1.14E-01	12.1	7.72E-01
2	1	87.92	16445	5243	1.23	183.54	6.97E+00	1.93E+00	1.1	2.31E+00
3	1	122.05	15075	5614	1.26	251.65	8.65E+00	1.77E+00	1.3	7.88E-01
4	1	136.49	2140	4042	1.49	280.46	8.65E+00	2.52E-01	6.0	1.70E+00
5	1	165.89	10292	4634	1.34	339.14	8.16E+00	1.21E+00	1.7	9.22E-01
6	1	255.24	566	3634	1.33	517.46	6.16E+00	6.66E-02	20.3	1.29E+00
7	1	279.23	2924	3581	1.40	565.32	5.72E+00	3.44E-01	4.4	1.10E+00
8	1	391.76	13449	3344	1.46	789.87	4.25E+00	1.58E+00	1.2	2.30E+00
9	1	514.04	7815	3136	1,53	1033.88	3.31E+00	9.19E-01	1.9	8.36E-01
10	1	661.65	32506	2608	1,64	1328.41	2.59E+00	3.82E+00	0.7	1.21E+00
11	1	898.01	16369	2548	1.78	1800.01	1.92E+00	1.93E+00	1.0	8.30E-01
12	1	1173.18	23661	1206	1.92	2348.99	1.48E+00	2.78E+00	0.7	5.31E-01
13	1	1332.45	21386	633	2.00	2666.73	1.31E+00	2.52E+00	0.7	6.28E-01
74	7	1836 03	9422	225	2.27	3671.21	1.02E+00	1.11E+00	1.1	1.35E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 11:57:03.65
TBE08 31-TP20610B HpGe ******* Aquisition Date/Time: 19-DEC-2019 09:30:14.76

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.22	968	4222	1.09	100.32	7.97E-01	1.14E-01	12.1	7.72E-01
2	1	87.92	16445	5243	1.23	183.54	6.97E+00	1.93E+00	1.1	2.31E+00
3	1	122.05	15075	5614	1.26	251.65	8.65E+00	1.77E+00	1.3	7.88E-01
4	1	136.49	2140	4042	1.49	280.46	8.65E+00	2.52E-01	6.0	1.70E+00
5	1	165.89	10292	4634	1.34	339.14	8.16E+00	1.21E+00	1.7	9.22E-01
6	1	255.24	566	3634	1.33	517.46	6.16E+00	6.66E-02	20.3	1.29E+00
7	1	279.23	2924	3581	1.40	565.32	5.72E+00	3.44E-01	4.4	1.10E+00
8	1	391.76	13449	3344	1.46	789.87	4.25E+00	1.58E+00	1.2	2.30E+00
9	1	514.04	7815	3136	1.53	1033.88	3.31E+00	9.19E-01	1.9	8.36E-01
10	1	661.65	32506	2608	1.64	1328.41	2.59E+00	3.82E+00	0.7	1.21E+00
11	1	898.01	16369	2548	1.78	1800.01	1.92E+00	1.93E+00	1.0	8.30E-01
12	1	1173.18	23661	1206	1.92	2348.99	1.48E+00	2.78E+00	0.7	5.31E-01
13	1	1332.45	21386	633	2.00	2666.73	1.31E+00	2.52E+00	0.7	6.28E-01
14	1	1836.03	9422	225	2.27	3671.21	1.02E+00	1.11E+00	1.1	1.35E+00

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

-	. T				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	16445	3.72*	6.973E+00	7.457E+02	1.008E+03	2.29
03-CO57	122.06	15075	85.51*	8.646E+00	2.399E+01	4.011E+01	2.57
04-CE139	165.85	10292	80.35*	8.164E+00	1.846E+01	5.077E+01	3.30
05-HG203	279.20	2924	81.46*	5.722E+00	7.379E+00	1.465E+02	8.76
06-SN113	391.69	13449	64.90*	4.254E+00	5.731E+01	1.922E+02	2.48
07-SR85	513.99	7815	99.27*	3.306E+00	2.801E+01	2.400E+02	3.83
08-CS137	661.65	32506	85.12*	2.594E+00	1.732E+02	1.754E+02	1.31
09-Y88	898.02	16369	93.40*	1.918E+00	1.075E+02	3.968E+02	2.09
10-CO60	1173.22	23661	100.00	1.475E+00	1.887E+02	2.028E+02	1.47
	1332.49	21386	100.00*	1.311E+00	1.920E+02	2.064E+02	1.47
12-Y88	1836.01	9422	99.38*	1.024E+00	1.090E+02	4.022E+02	2.23

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Acquisition date : 19-DEC-2019 09:30:14 Sample ID : 08S25121919

Total number of lines in spectrum 14 Number of unidentified lines 3 Number of lines tentatively identified by NID 11

78.57%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.457E+02	1.008E+03.	0.023E+03	2.29
03-CO57	270.90D	1.67	2.399E+01	4.011E+01	0.103E+01	2.57
04-CE139	137.66D	2.75	1.846E+01	5.077E+01	0.168E+01	3.30
05-HG203	46.61D	19.8	7.379E+00	1.465E+02	0.128E+02	8.76
06-SN113	115.10D	3.35	5.731E+01	1.922E+02	0.048E+02	2.48
07-SR85	64.84D	8.57	2.801E+01	2.400E+02	0.092E+02	3.83
08-CS137	30.17Y	1.01	1.732E+02	1.754E+02	0,023E+02	1.31
09-Y88	106.65D	3.69	1.075E+02	3.968E+02	0.083E+02	2.09
10-CO60	5.27Y	1.08	1.920E+02	2.064E+02	0.030E+02	1.47
12-Y88	106.65D	3.69	1.090E+02	4.022E+02	0.089E+02	2.23
			ATTS: NAME ATTS: NAME ATTS: NAME ATTS: NAME			

Total Activity: 1.462E+03 2.858E+03

Grand Total Activity: 1.462E+03 2.858E+03

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 08S25121919

Acquisition date: 19-DEC-2019 09:30:14

517.46 512 10 6.66E-02 40.6 6.16E+00

Page: 3

It Energy Area Bkgnd FWHM Channel Left Pw Cts/Sec %Err %Eff Flags

1 46.22 968 4222 1.09 100.32 97 8 1.14E-01 24.2 7.97E-01
1 136.49 2140 4042 1.49 280.46 276 10 2.52E-01 11.9 8.65E+00

Flags: "T" = Tentatively associated

566

Summary of Nuclide Activity

Total number of lines in spectrum 14

Number of unidentified lines 3

Number of lines tentatively identified by NID 11 78.57%

3634 1.33

Nuclide Type :

255.24

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.457E+02	1.008E+03	0.023E+03	2.29
03-CO57	270.90D	1.67	2.399E+01	4.011E+01	0.103E+01	2.57
04-CE139	137.66D	2.75	1.846E+01	5.077E+01	0.168E+01	3.30
05-HG203	46.61D	19.8	7.379E+00	1.465E+02	0.128E+02	8.76
06-SN113	115.10D	3.35	5.731E+01	1.922E+02	0.048E+02	2.48
07-SR85	64.84D	8.57	2.801E+01	2.400E+02	0.092E+02	3.83
08-CS137	30.17Y	1.01	1.732E+02	1.754E+02	0.023E+02	1.31
09-Y88	106.65D	3.69	1.075E+02	3.968E+02	0.083E+02	2.09
10-CO60	5.27Y	1.08	1.903E+02	2.046E+02	0.021E+02	1.04
12-Y88	106.65D	3,69	1.090E+02	4.022E+02	0.089E+02	2.23
	Total Acti	vity:	1.461E+03	2.856E+03		

Grand Total Activity: 1.461E+03 2.856E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
naciiac	(22) 1011117		. ~,		
02-CD109	1.008E+03	2.311E+01	1.822E+01	0.000E+00	55.299
03-CO57	4.011E+01	1.031E+00	7.340E-01	0.000E+00	54.648
04-CE139	5.077E+01	1.678E+00	1.305E+00	0.000E+00	38.902
05-HG203	1.465E+02	1.282E+01	1.242E+01	0.000E+00	11.794
06-SN113	1.922E+02	4.763E+00	3.294E+00	0.000E+00	58.358
07-SR85	2.400E+02	9.188E+00	6.549E+00	0.000E+00	36.647
08-CS137	1.754E+02	2.292E+00	1.071E+00	0.000E+00	163.721

09-Y88 10-CO60 12-Y88	3.968E+02 2.046E+02 4.022E+02	8.278E+00 2.127E+00 8.950E+00	4.619E+00 1.090E+00 2.374E+00	0.000E+00 0.000E+00 0.000E+00	85.910 187.592 169.424
Non-Id	dentified Nuclide	s			
Nuclide	Key-Line Activity K.L (BQ/TOTAL) Ide	. Act error d	MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	6 813E-02	2 018E+00	3 218E+00	0 000E+00	0 021

```
A,08S25121919
                   ,12/26/2019 11:57,06/01/2019 12:00,
                                                            1.000E+00,S25 5ML MIXED
B,08S25121919
                                          ,12/26/2019 11:55,08S25121919
                   , CALIBRATION
C,02-CD109,YES,
                   1.008E+03,
                                 2.311E+01,
                                                1.822E+01,,
                                                               55.299
C,03-CO57 ,YES,
                                                7.340E-01,,
                   4.011E+01,
                                 1.031E+00,
                                                               54.648
C,04-CE139,YES,
                   5.077E+01,
                                 1.678E+00,
                                                1.305E+00,,
                                                               38.902
C,05-HG203,YES,
                   1.465E+02,
                                                1.242E+01,,
                                 1.282E+01,
                                                               11.794
C,06-SN113,YES,
                                                3.294E+00,,
                   1.922E+02,
                                 4.763E+00,
                                                               58.358
C,07-SR85 ,YES,
                   2.400E+02,
                                 9.188E+00,
                                                6.549E+00,,
                                                               36.647
C,08-CS137,YES,
                   1.754E+02,
                                 2.292E+00,
                                                              163.721
                                                1.071E+00,,
          ,YES,
                                                4.619E+00,,
C, 09-Y88
                   3.968E+02,
                                 8.278E+00,
                                                               85.910
C,10-CO60 ,YES,
                   2.046E+02,
                                 2.127E+00,
                                                1.090E+00,,
                                                             187,592
         ,YES,
C, 12-Y88
                   4.022E+02,
                                 8.950E+00,
                                                2.374E+00,,
                                                             169.424
C,01-AM241,NO ,
                   6.813E-02,
                                 2.018E+00,
                                                3.218E+00,,
                                                                0.021
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S50 Bottle

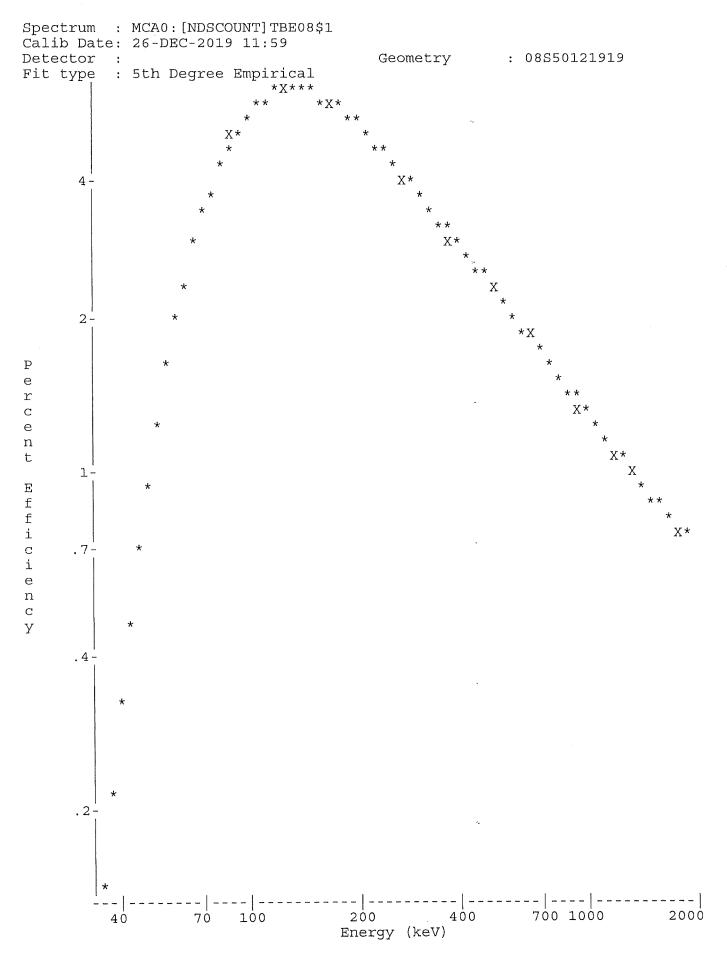
		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq//Tot	G/S ·	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1011.0	0.44%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	39.7	-0.47%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	51.7	1.35%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	145.0	-7.08%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	188.9	-0.90%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	246.5	0.19%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	174.8	1.86%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	395.5	-2.64%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	203.2	-0.11%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	206.2	1.26%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	402.3	-0.35%

Eff. Name: 08S50121919

Analyst:

KOJ

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 11:59:44.02 TBE08 31-TP20610B HpGe ******* Aquisition Date/Time: 19-DEC-2019 14:24:25.59


LIMS No., Customer Name, Client ID: S50 5ML MIXED GAMMA CALIBRATION

Sample Type : STD Geometry : 08S50121919
Quantity : 1.00000E+00 TOTAL BKGFILE : 08BG112719MT
Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 03:30:31.74
End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 03:30:00.00

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.22	1277	5281	1.50	100.46	7.01E-01	1.01E-01	10.6	1.75E+00
2	1	87.92	16596	6858	1.24	183.66	4.74E+00	1.32E+00	1.2	2.05E-01
3	1	122.05	15088	5409	1.26	251.78	5.90E+00	1,20E+00	1.2	5.56E-01
4	1	136.46	2057	5308	1.46	280.53	5.94E+00	1.63E-01	7.2	6.20E-01
5	1	165.90	10778	5471	1.35	339.29	5.68E+00	8.55E-01	1.7	7.49E-01
6	1	255.16	647	3704	1.43	517.41	4.35E+00	5.13E-02	17.4	3.53E-01
7	1	279.24	3024	4125	1.37	565.47	4.05E+00	2.40E-01	4.5	9.44E-01
8	1	391.75	13827	4116	1.45	789.97	3.01E+00	1.10E+00	1.3	2,11E+00
9	1	514.02	8393	4272	1.57	1033.96	2.34E+00	6.66E-01	2.1	4.31E+00
10	1	661.65	34173	2764	1.64	1328.51	1.85E+00	2.71E+00	0.6	1.83E+00
11	1	814.11	316	1342	1.40	1632.71	1.52E+00	2.51E-02	21.5	1.13E+00
12	1	898.01	17482	2500	1.78	1800.10	1.39E+00	1.39E+00	1.0	7.35E-01
13	1	1173.18	25897	1364	1.89	2349.07	1.09E+00	2.06E+00	0.7	1.16E+00
14	1	1332.46	23483	689	2.00	2666.79	9.72E-01	1.86E+00	0.7	1.07E+00
15	1	1836,03	10194	166	2.26	3671.21	7.48E-01	8.09E-01	1.0	6.49E-01

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:02:28.82 TBE08 31-TP20610B HpGe ****** Aquisition Date/Time: 19-DEC-2019 14:24:25.59

LIMS No., Customer Name, Client ID: S50 5ML MIXED GAMMA CALIBRATION

Smple Date: 1-JUN-2019 12:00:00.0 Sample ID : 08S50121919

Geometry : 08S50121919 Sample Type : STD Quantity : 1.00000E+00 TOTAL BKGFILE : 08BG112719MT Energy Tol : 2.00000 Real Time : 0 03:30:31.74 Start Channel: 80 End Channel : 4090 Pk Srch Sens: 9.00000 Liv MDA Multiple : 4.6600 Library Used: CALIBRATION Pk Srch Sens: 9.00000 Live time: 0 03:30:00.00

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.22	1277	5281	1.50	100.46	7.01E-01	1.01E-01	10.6	1.75E+00
2	1	87.92	16596	6858	1.24	183.66	4.74E+00	1.32E+00	1.2	2.05E-01
3	1	122.05	15088	5409	1.26	251.78	5.90E+00	1.20E+00	1.2	5.56E-01
4	1	136.46	2057	5308	1.46	280.53	5.94E+00	1.63E-01	7.2	6.20E-01
5	1	165.90	10778	5471	1.35	339.29	5.68E+00	8.55E-01	1.7	7.49E-01
6	1	255.16	647	3704	1.43	517.41	4.35E+00	5.13E-02	17.4	3.53E-01
7	1	279.24	3024	4125	1.37	565.47	4.05E+00	2.40E-01	4.5	9.44E-01
8	1	391.75	13827	4116	1.45	789.97	3.01E+00	1.10E+00	1.3	2.11E+00
9	1	514.02	8393	4272	1.57	1033.96	2.34E+00	6.66E-01	2.1	4.31E+00
10	1	661.65	34173	2764	1,64	1328.51	1.85E+00	2.71E+00	0.6	1.83E+00
11	1	814.11	316	1342	1.40	1632.71	1.52E+00	2.51E-02	21.5	1.13E+00
12	1	898.01	17482	2500	1.78	1800.10	1.39E+00	1.39E+00	1.0	7.35E-01
13	1	1173.18	25897	1364	1.89	2349.07	1.09E+00	2.06E+00	0.7	1.16E+00
14	1	1332.46	23483	689	2.00	2666.79	9.72E-01	1.86E+00	0.7	1.07E+00
15	1	1836.03	10194	166	2.26	3671.21	7.48E-01	8.09E-01	1.0	6.49E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

Nucliuc Type.					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	16596	3.72*	4.736E+00	7.477E+02	1.011E+03	2.49
03-CO57	122.06	15088	85.51*	5.897E+00	2.374E+01	3.973E+01	2.45
04-CE139	165.85	10778	80.35*	5,676E+00	1.876E+01	5.165E+01	3.36
05-HG203	279.20	3024	81.46*	4.047E+00	7.281E+00	1.450E+02	8.99
06-SN113	391.69	13827	64.90*	3.007E+00	5.623E+01	1.889E+02	2.56
07-SR85	513.99	8393	99.27*	2.338E+00	2,869E+01	2.465E+02	4.28
08-CS137	661.65	34173	85.12*	1.846E+00	1.726E+02	1.748E+02	1.28
09-Y88	898.02	17482	93.40*	1.389E+00	1.070E+02	3.955E+02	1.96
10-CO60	1173.22	25897	100.00	1.088E+00	1.890E+02	2.032E+02	1.41
	1332.49	23483	100.00*	9.718E-01	1.918E+02	2.062E+02	1.41
12-Y88	1836.01	10194	99.38*	7.480E-01	1.088E+02	4.023E+02	2.08

Flaq: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 08S50121919 Acquisition date: 19-DEC-2019 14:24:25

Total number of lines in spectrum 15
Number of unidentified lines 4

Number of lines tentatively identified by NID 11 73.33%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL "	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.477E+02	1.011E+03	0.025E+03	2.49
03-CO57	270,90D	1.67	2.374E+01	3.973E+01	0.097E+01	2.45
04-CE139	137.66D	2.75	1.876E+01	5.165E+01	0.174E+01	3.36
05-HG203	46.61D	19.9	7.281E+00	1.450E+02	0.130E+02	8.99
06-SN113	115.10D	3.36	5.623E+01	1.889E+02	0.048E+02	2.56
07-SR85	64.84D	8.59	2.869E+01	2.465E+02	0.106E+02	4.28
08-CS137	30.17Y	1.01	1.726E+02	1.748E+02	0.022E+02	1.28
09-Y88	106.65D	3.70	1.070E+02	3.955E+02	0.078E+02	1.96
10-CO60	5.27Y	1.08	1.918E+02	2.062E+02	0.029E+02	1.41
12-Y88	106.65D	3.70	1.088E+02	4.023E+02	0.084E+02	2.08

Total Activity: 1.463E+03 2.861E+03

Grand Total Activity: 1.463E+03 2.861E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 08S50121919

Page: 3
Acquisition date: 19-DEC-2019 14:24:25

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	lags
1	46.22	1277	5281	1.50	100.46	96	9	1.01E-01	21.3	7.01E-01	
1	136.46	2057	5308	1.46	280.53	275	11	1.63E-01	14.4	5.94E+00	
1.	255.16	647	3704	1.43	517.41	514	9	5.13E-02	34.9	4.35E+00	
1	814.11	316	1342	1.40	1632.71	1628	9	2.51E-02	43.1	1.52E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 15
Number of unidentified lines 4
Number of lines tentatively identified by NID 11 73.33%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.477E+02	1.011E+03	0.025E+03	2.49
03-CO57	270.90D	1.67	2.374E+01	3.973E+01	0.097E+01	2.45
04-CE139	137.66D	2.75	1.876E+01	5.165E+01`	0.174E+01	3.36
05-HG203	46.61D	19.9	7.281E+00	1.450E+02	0.130E+02	8.99
06-SN113	115.10D	3.36	5,623E+01	1.889E+02	0.048E+02	2.56
07-SR85	64.84D	8.59	2.869E+01	2.465E+02	0.106E+02	4.28
08-CS137	30.17Y	1.01	1.726E+02	1.748E+02	0.022E+02	1.28
09-Y88	106.65D	3.70	1.070E+02	3.955E+02	0.078E+02	1.96
10-CO60	5.27Y	1.08	1.904E+02	2.047E+02	0.020E+02	1.00
12-Y88	106.65D	3.70	1.088E+02	4.023E+02	0.084E+02	2.08

Total Activity : 1.461E+03 2.859E+03

Grand Total Activity : 1.461E+03 2.859E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109 03-CO57 04-CE139 05-HG203 06-SN113 07-SR85	1.011E+03 3.973E+01 5.165E+01 1.450E+02 1.889E+02 2.465E+02	2.512E+01 9.733E-01 1.737E+00 1.303E+01 4.831E+00 1.055E+01	1.884E+01 7.871E-01 1.332E+00 1.248E+01 3.407E+00 6.386E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	53.628 50.475 38.790 11.620 55.431 38.593

08-CS137 09-Y88 10-CO60 12-Y88	1.748E+02 3.955E+02 2.047E+02 4.023E+02	2.230E+00 7.764E+00 2.041E+00 8.355E+00	1.062E+00 4.579E+00 1.007E+00 2.125E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	164.526 86.362 203.154 189.307
Non-Id	dentified Nuclide	S			
Nuclide	Key-Line Activity K.L (BQ/TOTAL) Ide		MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	-1.459E+00	1.968E+00	3.106E+00	0.000E+00	-0.470

```
A,08S50121919
                   ,12/26/2019 12:02,06/01/2019 12:00,
                                                            1.000E+00,S50 5ML MIXED
                                          ,12/26/2019 11:59,08S50121919
B,08S50121919
                   , CALIBRATION
C,02-CD109,YES,
                   1.011E+03,
                                 2.512E+01,
                                               1.884E+01,,
                                                              53.628
                                               7.871E-01,,
                   3.973E+01,
                                                              50.475
C,03-CO57,YES,
                                 9.733E-01,
                                                              38.790
                                               1.332E+00,,
C,04-CE139,YES,
                   5.165E+01,
                                 1.737E+00,
C, 05-HG203, YES,
                   1.450E+02,
                                 1.303E+01,
                                               1.248E+01,,
                                                              11.620
C,06-SN113,YES,
                   1.889E+02,
                                 4.831E+00,
                                               3.407E+00,,
                                                              55.431
C,07-SR85 ,YES,
                   2.465E+02,
                                 1.055E+01,
                                               6.386E+00,,
                                                              38.593
C,08-CS137,YES,
                   1.748E+02,
                                 2.230E+00,
                                               1.062E+00,,
                                                             164.526
          ,YES,
C,09-Y88
                   3.955E+02,
                                 7.764E+00,
                                               4.579E+00,,
                                                              86.362
                   2.047E+02,
                                 2.041E+00,
                                               1.007E+00,,
                                                             203.154
C,10-CO60 ,YES,
C, 12-Y88 , YES,
                   4.023E+02,
                                 8.355E+00,
                                               2.125E+00,,
                                                             189.307
                  -1.459E+00,
                                 1.968E+00,
                                               3.106E+00,,
                                                               -0.470
C,01-AM241,NO ,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	.ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	993.6	-1.29%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	42.1	5.37%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	47.8	-6.25%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	156.1	0.04%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	191.6	0.51%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	246.5	0.19%
Cs-137	30.17y	661.6	330,6		85.12%	171.61	146.07	172.8	0.69%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	386.9	-4.76%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	204.0	0.28%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	207.4	1.84%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	400.1	-0.89%

Eff. Name: 11S25121819

Analyst:

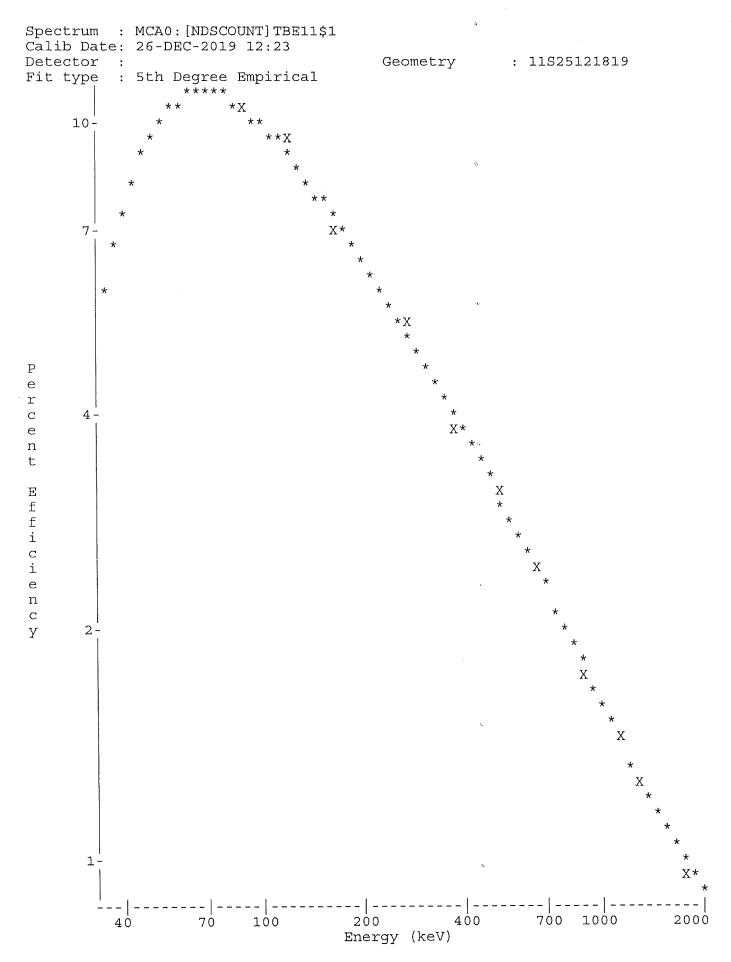
KOJ

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:23:32.17 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 18-DEC-2019 09:33:11.11

TIMO NE CONTROL NOTE COLOR TO COLOR THE MIXED CAMMA CALIBRATION

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 11S25121819


 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 11BG112719MT

 Start Channel
 : 70
 Energy Tol
 : 2.00000
 Real Time
 : 0 03:11:53.14

 End Channel
 : 4090
 Pk Srch Sens: 9.00000
 Live time
 : 0 03:11:03.28

MDA Multiple : 4.6600 Library Used: CALIBRATION Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.47	35805	13059	1.40	91.92	9.09E+00	3.12E+00	0.9	
2	0	88.02	33122	7436	1.42	175.07	1.05E+01	2.89E+00	0.8	
3	0	122.04	22326	7271	1.51	243.14	9.03E+00	1.95E+00	1.1	
4	0	136.43	2706	4424	1.36	271.93	8.44E+00	2.36E-01	5.0	
5	0	165.87	11911	5271	1.51	330.83	7.41E+00	1.04E+00	1.5	
6	0	199.04	676	4281	1.71	397.18	6.51E+00	5.90E-02	17.9	
7	0	255.21	882	3762	1.57	509.58	5.41E+00	7.69E-02	13.5	
8	0	279.20	3759	5069	1.56	557.57	5.05E+00	3.28E-01	4.3	
9	0	391.75	16494	4392	1.66	782.76	3.86E+00	1.44E+00	1.2	
10	0	513.92	10151	3822	1.80	1027.19	3.07E+00	8.86E-01	1.7	
11	0	661.66	40746	3429	1.88	1322.79	2.45E+00	3.55E+00	0.6	
12	0	898.01	20678	3829	2.05	1795.69	1.83E+00	1.80E+00	1.0	
13	0	1173.22	31189	1914	2.27	2346.36	1.41E+00	2.72E+00	0.7	
14	0	1332.52	27709	1290	2.33	2665.10	1.25E+00	2.42E+00	0.7	
15	0	1835.99	11913	387	2.75	3672.54	9.59E-01	1.04E+00	1.0	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:24:28.73 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 18-DEC-2019 09:33:11.11

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Smple Date: 1-JUN-2019 12:00:00.0 : 11S25121819 Sample ID

Geometry : 11S25121819 Sample Type : STD Quantity : 1.00000E+00 TOTAL BKGFILE : 11BG112719MT Start Channel: 70 Energy Tol: 2.00000 Real Time: 0 03:11:53.14
End Channel: 4090 Pk Srch Sens: 9.00000 Live time: 0 03:11:03.28
MDA Multiple: 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.47*	35629	13059	1,40	91.92	9.09E+00	3.11E+00	0.9	
2	0	88.02*	33070	7436	1.42	175.07	1.05E+01	2.88E+00	0.8	
3	0	122.04	22326	7271	1.51	243,14	9.03E+00	1.95E+00	1.1	
4	0	136.43	2706	4424	1.36	271.93	8.44E+00	2.36E-01	5.0	
5	0	165.87	11911	5271	1.51	330.83	7:41E+00	1.04E+00	1.5	
6	0	199.04	676	4281	1.71	397.18	6.51E+00	5.90E-02	17.9	
7	0	255.21	882	3762	1.57	509.58	5.41E+00	7.69E-02	13.5	
8	0	279.20	3759	5069	1.56	557.57	5.05E+00	3.28E-01	4.3	
9	0	391.75	16494	4392	1.66	782.76	3.86E+00	1.44E+00	1.2	
10	0	513.92	10151	3822	1.80	1027.19	3.07E+00	8.86E-01	1.7	
11	0	661.66	40746	3429	1.88	1322.79	2.45E+00	3.55E+00	0.6	
12	0	898.01	20678	3829	2.05	1795.69	1.83E+00	1.80E+00	1.0	
13	0	1173.22	31189	1914	2.27	2346.36	1.41E+00	2.72E+00	0.7	
14	0	1332.52	27709	1290	2.33	2665.10	1.25E+00	2.42E+00	0.7	
15	0	1835.99	11913	387	2.75	3672.54	9.59E-01	1.04E+00	1.0	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

Nucliuc 1	naciiae ippe.				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	33070	3.72*	1.053E+01	7.365E+02	9.936E+02	1.51
03-CO57	122.06	22326	85.51*	9.032E+00	2.522E+01	4.206E+01	2.13
04-CE139	165.85	11911	80.35*	7.407E+00	1.746E+01	4.778E+01	3.05
05-HG203	279.20	3759	81.46*	5.046E+00	7.978E+00	1.561E+02	8.67
06-SN113	391.69	16494	64.90*	3.858E+00	5, 747E+01	1.916E+02	2.34
07-SR85	513.99	10151	99.27*	3.069E+00	2.907E+01	2.465E+02	3,37
08-CS137	661.65	40746	85,12*	2.447E+00	1.707E+02	1.728E+02	1.19
09-Y88	898.02	20678	93.40*	1.831E+00	1.055E+02	3.869E+02	2,02
10-CO60	1173.22	31189	100.00	1.413E+00	1.926E+02	2.070E+02	1.35
	1332.49	27709	100.00*	1.253E+00	1.930E+02	2.074E+02	1.36
12-Y88	1836.01	11913	99.38*	9.586E-01	1.091E+02	4.001E+02	2.07

Flaq: "*" = Keyline

Summary of Nuclide Activity Page : Sample ID : 11S25121819 Acquisition date : 18-DEC-2019 09:33:11

Total number of lines in spectrum 15 Number of unidentified lines 4

Number of lines tentatively identified by NID 11 73.33%

Nuclide Type :

			Uncorrected	Decay Corr.	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.365E+02	9.936E+02	0.150E+02	1.51
03-CO57	270.90D	1.67	2.522E+01	4.206E+01	0.090E+01	2.13
04-CE139	137.66D	2.74	1.746E+01	4.778E+01	0.146E+01	3.05
05-HG203	46.61D	19.6	7.978E+00	1.561E+02	0.135E+02	8.67
06-SN113	115.10D	3.33	5.747E+01	1.916E+02	0.045E+02	2.34
07-SR85	64.84D	8.48	2.907E+01	2.465E+02	0.083E+02	3.37
08-CS137	30.17Y	1.01	1.707E+02	1.728E+02	0.021E+02	1.19
09-Y88	106.65D	3.67	1.055E+02	3.869E+02,	0.078E+02	2.02
10-CO60	5.27Y	1.07	1.930E+02	2.074E+02	0.028E+02	1.36
12-Y88	106.65D	3.67	1.091E+02	4.001E+02	0.083E+02	2.07

Total Activity: 1.452E+03 2.845E+03

Grand Total Activity: 1.452E+03 2.845E+03

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 11S25121819 Page: 3
Acquisition date: 18-DEC-2019 09:33:11

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	lags
0	46.47	35629	13059	1.40	91.92	84	16	3.11E+00	1.8	9.09E+00	
0	136.43	2706	4424	1.36	271.93	267	10	2.36E-01	10.0	8.44E+00	
0	199.04	676	4281	1.71	397.18	393	9	5.90E-02	35.8	6.51E+00	
0	255.21	882	3762	1.57	509.58	505	10	7.69E-02	26.9	5.41E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 15
Number of unidentified lines 4
Number of lines tentatively identified by NID 11 73.33%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.365E+02	9.936E+02	0.150E+02	1.51
03-CO57	270.90D	1.67	2.522E+01	4,206E+01	0.090E+01	2.13
04-CE139	137,66D	2.74	1.746E+01	4.778E+01	0.146E+01	3.05
05-HG203	46.61D	19.6	7.978E+00	1.561E+02	0.135E+02	8.67
06-SN113	115.10D	3.33	5.747E+01	1.916E+02	0.045E+02	2.34
07-SR85	64.84D	8.48	2.907E+01	2.465E+02	0.083E+02	3.37
08-CS137	30.17Y	1.01	1.707E+02	1.728E+02	0.021E+02	1.19
09-Y88	106.65D	3.67	1.055E+02	3.869E+02	0.078E+02	2,02
10-CO60	5.27Y	1.07	1.928E+02	2.072E+02	0.020E+02	0.96
12-Y88	106,65D	3,67	1.091E+02	4.001E+02	0.083E+02	2.07
	Total Acti	vity:	1.452E+03	2.845E+03		

•

Grand Total Activity: 1.452E+03 2.845E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109 03-CO57 04-CE139 05-HG203 06-SN113 07-SR85	9.936E+02 4.206E+01 4.778E+01 1.561E+02 1.916E+02 2.465E+02	1.498E+01 8.978E-01 1.458E+00 1.354E+01 4.489E+00 8.295E+00	1.082E+01 5.806E-01 1.184E+00 1.154E+01 3.055E+00 5.803E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	91.870 72.446 40.361 13.519 62.714 42.472

			`		
08-CS137 09-Y88 10-CO60 12-Y88	1.728E+02 3.869E+02 2.072E+02 4.001E+02	2.055E+00 7.819E+00 1.985E+00 8.273E+00	9.699E-01 4.238E+00 1.064E+00 2.392E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	178.192 91.296 194.716 167.287
Non-Ide	entified Nuclides	}			
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ideo		MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	3.178E-01	4.178E-01	7.052E-01	0.000E+00	0.451

```
,12/26/2019 12:24,06/01/2019 12:00,
A,11S25121819
                                                           1.000E+00,S25 5ML MIXED
                                          ,12/26/2019 12:23,11525121819
                   , CALIBRATION
B,11S25121819
                   9.936E+02,
C,02-CD109,YES,
                                 1.498E+01,
                                               1.082E+01,,
                                                              91.870
C,03-CO57 ,YES,
                   4.206E+01,
                                 8.978E-01,
                                               5.806E-01,,
                                                              72.446
                                               1.184E+00,,
                                                              40.361
C,04-CE139,YES,
                   4.778E+01,
                                 1.458E+00,
C,05-HG203,YES,
                   1.561E+02,
                                 1.354E+01,
                                               1.154E+01,,
                                                              13.519
C,06-SN113,YES,
                   1.916E+02,
                                 4.489E+00,
                                               3.055E+00,,
                                                              62.714
C,07-SR85 ,YES,
                   2.465E+02,
                                               5.803E+00,,
                                 8.295E+00,
                                                              42,472
                   1.728E+02,
C,08-CS137,YES,
                                 2.055E+00,
                                               9.699E-01,,
                                                             178.192
         ,YES,
                   3.869E+02,
                                               4.238E+00,,
C,09-Y88
                                 7.819E+00,
                                                              91,296
C,10-CO60 ,YES,
                   2.072E+02,
                                 1.985E+00,
                                               1.064E+00,,
                                                             194.716
         ,YES,
                                                             167.287
C,12-Y88
                   4.001E+02,
                                 8.273E+00,
                                               2.392E+00,,
C,01-AM241,NO,
                   3.178E-01,
                                 4.178E-01,
                                               7.052E-01,,
                                                               0.451
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S50 Bottle

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	.ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1006.0	-0.06%
Co-57	271.8d	122.1	77.25		85.51%	39,92	34.13	41.5	3.92%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	48.2	-5.44%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	161.2	3.30%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	195.4	2.51%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	237.4	-3.50%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	177.2	3.26%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	401.1	-1.26%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	205.2	0.87%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	203.0	-0.32%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	403.2	-0.12%

Eff. Name: 11S50121819

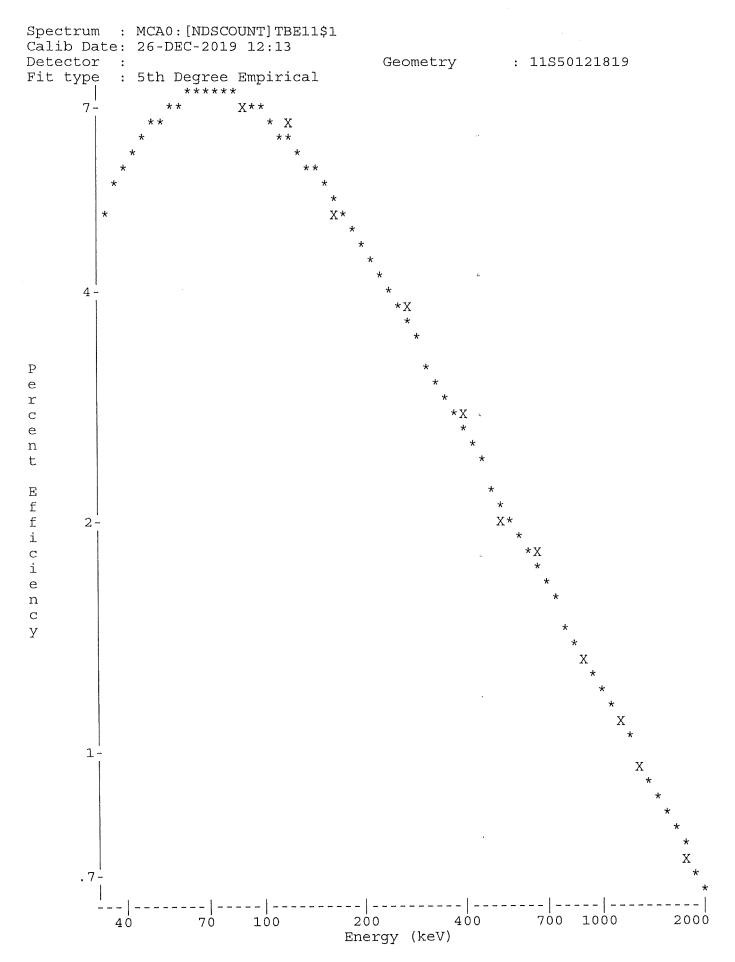
Analyst: K

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:13:14.79 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 18-DEC-2019 12:47:43.02

LIMS No., Customer Name, Client ID: S50 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 11S50121819

 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 11BG112719MT


 Start Channel
 : 70
 Energy Tol
 : 2.00000
 Real Time
 : 0 03:46:41.61

 End Channel
 : 4090
 Pk Srch Sens
 9.00000
 Live time
 : 0 03:45:57.97

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.49	28911	9660	1.40	92.06	6.56E+00	2.13E+00	0.9	
2	0	75.22	520	6287	0.90	149.55	7.43E+00	3.84E-02	27.0	
3	0	88.03	27395	7771	1.41	175.20	7.27E+00	2.02E+00	0.9	
4	0	122.05	18602	6243	1.46	243.27	6.46E+00	1.37E+00	1.1	
5	0	136.49	2351	4406	1.44	272.17	6.08E+00	1.73E-01	5.7	
6	0	165.86	10336	4773	1,52	330.94	5.39E+00	7.62E-01	1.6	
7	0	199.23	418	3693	1.51	397.70	4.74E+00	3.09E-02	25.6	
8	0	255.31	472	3399	1.11	509.93	3.91E+00	3.48E-02	22.7	
9	0	279.10	3299	4526	1.55	557.54	3.63E+00	2.43E-01	4.7	
10	0	391.72	14071	4008	1.68	782.88	2.73E+00	1.04E+00	1.3	
1.1	0	514.04	8152	3688	1.71	1027.64	2.17E+00	6.01E-01	2.0	
12	0	661.64	35340	3260	1.87	1322.97	1.75E+00	2.61E+00	0.6	
13	0	898,01	18766	3059	2.00	1795.90	1.36E+00	1.38E+00	1.0	
14	0	1173.19	28107	1699	2.23	2346.47	1.09E+00	2.07E+00	0.7	
15	0	1332.49	24977	1153	2.36	2665.17	9.75E-01	1.84E+00	0.7	
16	0	1836.01	10864	297	2.57	3672.49	7.34E-01	8.01E-01	1.0	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 12:14:19.85 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 18-DEC-2019 12:47:43.02

LIMS No., Customer Name, Client ID: S50 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 11S50121819

 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 11BG112719MT

 Start Channel
 : 70
 Energy Tol
 : 2.00000
 Real Time
 : 0 03:46:41.61

 End Channel
 : 4090
 Pk Srch Sens: 9.00000
 Live time
 : 0 03:45:57.97

MDA Multiple : 4.6600 Library Used: CALIBRATION,

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.49*	28703	9660	1.40	92.06	6.56E+00	2.12E+00	0.9	
2	0	75.22*	72	6287	0.90	149.55	7.43E+00	5.31E-031	96.1	
3	0	88.03*	27332	7771	1.41	175.20	7.27E+00	2.02E+00	0.9	
4	0	122.05	18602	6243	1.46	243.27	6.46E+00	1.37E+00	1.1	
5	0	136.49	2351	4406	1.44	272.17	6.08E+00	1.73E-01	5.7	
6	0	165.86	10336	4773	1.52	330.94	5.39E+00	7.62E-01	1.6	
7	0	199.23	418	3693	1.51	397.70	4.74E+00	3.09E-02	25.6	
8	0	255.31	472	3399	1.11	509.93	3.91E+00	3.48E-02	22.7	
9	0	279.10	3299	4526	1.55	557,54	3.63E+00	2.43E-01	4.7	
10	0	391.72	14071	4008	1.68	782.88	2.73E+00	1.04E+00	1.3	
11	0	514.04	8152	3688	1.71	1027.64	2.17E+00	6.01E-01	2.0	
12	0	661.64	35340	3260	1.87	1322.97	1.75E+00	2.61E+00	0.6	
13	0	898.01	18766	3059	2.00	1795.90	1.36E+00	1.38E+00	1.0	
14	0	1173.19	28107	1699	2.23	2346.47	1.09E+00	2.07E+00	0.7	
15	0	1332.49	24977	1153	2.36	2665.17	9.75E-01	1.84E+00	0.7	
16	0	1836.01	10864	297	2.57	3672.49	7.34E-01	8.01E-01	1.0	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

-	•				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	27332	3.72*	7.270E+00	7.455E+02	1.006E+03	1.80
03-CO57	122.06	18602	85.51*	6.455E+00	2.486E+01	4.148E+01	2.29
04-CE139	165.85	10336	80.35*	5.393E+00	1.759E+01	4.819E+01	3.25
05-HG203	279.20	3299	81.46*	3.633E+00	8.224E+00	1.612E+02	9.32
06-SN113	391.69	14071	64.90*	2.731E+00	5.855E+01	1.954E+02	2.55
07-SR85	513.99	8152	99.27*	2.166E+00	2.796E+01	2.374E+02	3,92
08-CS137	661,65	35340	85.12*	1.750E+00	1.750E+02	1.772E+02	1.30
09-Y88	898.02	18766	93.40*	1.357E+00	1.092E+02	4.011E+02	2.03
10-CO60	1173.22	28107	100.00	1.086E+00	1.909E+02	2.052E+02	1.42
	1332.49	24977	100.00*	9.751E-01	1.889E+02	2.030E+02	1.42
12-Y88	1836.01	10864	99.38*	7.343E-01	1.098E+02	4.032E+02	2.09

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Acquisition date : 18-DEC-2019 12:47:43 Sample ID : 11S50121819

Total number of lines in spectrum 16 Number of unidentified lines 5 Number of lines tentatively identified by NID 11

68.75%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.455E+02	1.006E+03	0.018E+03	1.80
03-CO57	270.90D	1.67	2.486E+01	4.148E+01	0.095E+01	2.29
04-CE139	137.66D	2.74	1.759E+01	4.819E+01	0.157E+01	3.25
05-HG203	46.61D	19.6	8.224E+00	1.612E+02	0.150E+02	9.32
06-SN113	115.10D	3.34	5.855E+01	1.954E+02	0.050E+02	2.55
07-SR85	64.84D	8.49	2.796E+01	2.374E+02	0.093E+02	3.92
08-CS137	30.17Y	1.01	1.750E+02	1.772E+02	0.023E+02	1.30
09-Y88	106.65D	3.67	1.092E+02	4.011E+02	0.081E+02	2.03
10-CO60	5.27Y	1.07	1.889E+02	2.030E+02	0.029E+02	1.42
12-Y88	106.65D	3.67	1.098E+02	4.032E+02	0.084E+02	2.09

Total Activity: 1.466E+03 2.874E+03

Grand Total Activity: 1.466E+03 2.874E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Sample ID : 11S50121819

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff Fla	ags
0	46.49	28703	9660	1.40	92.06	86	13	2.12E+00	1.9	6.56E+00	
0	75.22	72	6287	0.90	149.55	146	8	5.31E-03	****	7.43E+00	
0	136.49	2351	4406	1.44	272.17	267	10	1.73E-01	11.3	6.08E+00	
0	199.23	418	3693	1.51	397.70	395	8	3.09E-02	51.3	4.74E+00	
0	255.31	472	3399	1.11	509.93	506	9	3.48E-02	45.5	3.91E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 5
Number of lines tentatively identified by NID 11 68.75%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	1.35	7.455E+02	1.006E+03	0.018E+03	1.80
03-CO57	270.90D	1.67	2.486E+01	4.148E+01	0.095E+01	2.29
04-CE139	137.66D	2.74	1.759E+01	4.819E+01	0.157E+01	3.25
05-HG203	46,61D	19.6	8.224E+00	1.612E+02	0.150E+02	9.32
06-SN113	115.10D	3.34	5.855E+01	1.954E+02	0.050E+02	2.55
07-SR85	64.84D	8.49	2.796E+01	2.374E+02	0.093E+02	3.92
08-CS137	30.17Y	1.01	1.750E+02	1.772E+02	0.023E+02	1.30
09-Y88	106.65D	3.67	1.092E+02	4.011E+02	0.081E+02	2.03
10-CO60	5.27Y	1.07	1.899E+02	2.041E+02	0.020E+02	1.00
12-Y88	106.65D	3.67	1.098E+02	4.032E+02	0.084E+02	2.09

Grand Total Activity: 1.467E+03 2.875E+03

Total Activity: 1.467E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

2.875E+03.

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TÖTAL)	MDA error	Act/MDA
02-CD109 03-CO57 04-CE139 05-HG203 06-SN113	1.006E+03 4.148E+01 4.819E+01 1.612E+02 1.954E+02	1.807E+01 9.485E-01 1.566E+00 1.503E+01 4.977E+00	1.322E+01 6.726E-01 1.358E+00 1.309E+01 3.498E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	76.080 61.665 35.490 12.319 55.856

					•		
07-SR85 08-CS137 09-Y88 10-CO60 12-Y88	2.374E+02 1.772E+02 4.011E+02 2.041E+02 4.032E+02	9.307E+00 2.297E+00 8.140E+00 2.049E+00 8.438E+00	7.023E+00 1.100E+00 4.509E+00 1.112E+00 2.376E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	33.813 161.086 88.957 183.540 169.648		
Non-Identified Nuclides							
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA		
01-AM241	-4.500E-01	5.041E-01	8.374E-01	0.000E+00	-0.537		

```
A,11S50121819
                   ,12/26/2019 12:14,06/01/2019 12:00,
                                                            1.000E+00,S50 5ML MIXED
B,11S50121819
                   , CALIBRATION
                                          ,12/26/2019 12:13,11850121819
                                               1.322E+01,,
C,02-CD109,YES,
                   1.006E+03,
                                 1.807E+01,
                                                              76.080
C,03-CO57 ,YES,
                   4.148E+01,
                                               6.726E-01,,
                                 9.485E-01,
                                                              61.665
C,04-CE139,YES,
                   4.819E+01,
                                 1.566E+00,
                                               1.358E+00,,
                                                              35.490
C,05-HG203,YES,
                   1.612E+02,
                                 1.503E+01,
                                               1.309E+01,,
                                                              12.319
                                               3.498E+00,,
C,06-SN113,YES,
                   1.954E+02,
                                 4.977E+00,
                                                              55.856
C,07-SR85 ,YES,
                   2.374E+02,
                                               7.023E+00,,
                                                              33.813
                                 9.307E+00,
C,08-CS137,YES,
                   1.772E+02,
                                 2.297E+00,
                                               1.100E+00,,
                                                             161.086
          , YES,
                                               4.509E+00,,
C,09-Y88
                   4.011E+02,
                                 8.140E+00,
                                                              88.957
C,10-CO60 ,YES,
                   2.041E+02,
                                 2.049E+00,
                                               1.112E+00,,
                                                             183.540
C,12-Y88 ,YES,
                   4.032E+02,
                                 8.438E+00,
                                               2.376E+00,,
                                                             169.648
C,01-AM241,NO ,
                  -4.500E-01,
                                 5.041E-01,
                                               8.374E-01,,
                                                              -0.537
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Pb-210	22.26Y	46.6	72.1		4.18%	762.12	31.86		
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1006.0	-0.06%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.2	0.76%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	50.5	-0.89%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62		
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	190.5	-0.07%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	245.0	-0.41%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	174.3	1.57%
Y-88	106,65d	898.0	858.7		93.40%	406.22	379.41	392.8	-3.30%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	203.4	-0.01%
Co-60	5.27y	1332.5	460,9		100.00%	203.64	203.64	206.5	1.40%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	401.3	-0.59%

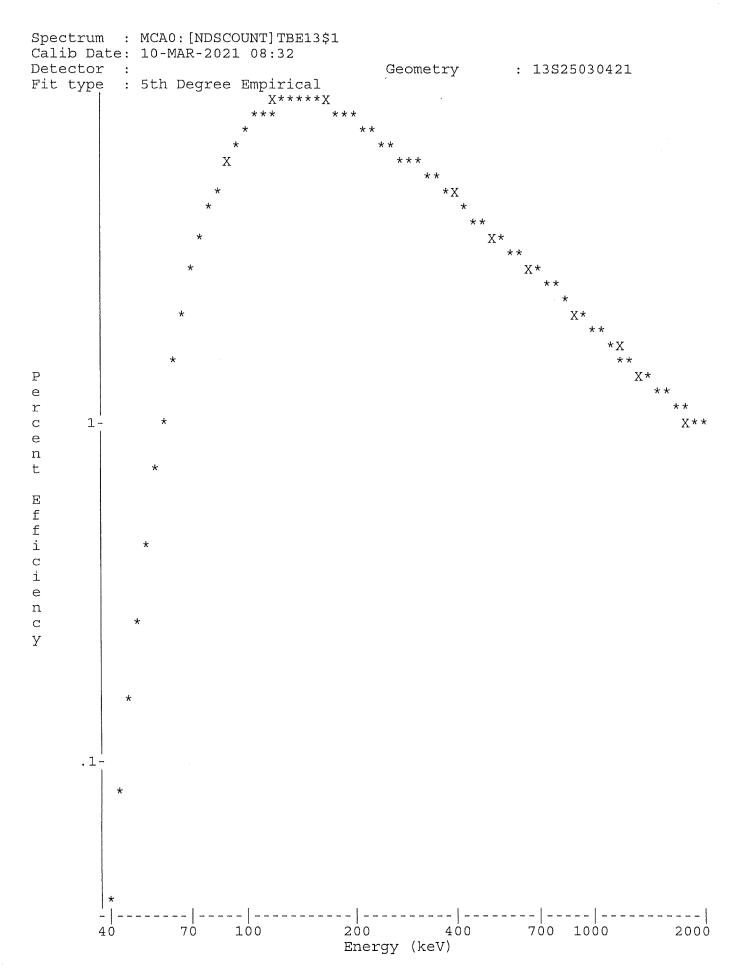
Eff. Name: 13S25030421

Analyst: K

KOJ

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-MAR-2021 08:32:24.00 TBE13 31-TP10727B HpGe ****** Aquisition Date/Time: 4-MAR-2021 08:26:35.99 _____

LIMS No., Customer Name, Client ID: S25 BOTTLE 5ML MIXED GAMMA CALIBRATION


Sample ID : 13S25030421 Smple Date: 1-JUN-2019 12:00:00.0

Sample Type : PCI Geometry : 13S25030421

Quantity : 1.00000E+00 TOTAL BKGFILE : NOBKG

Peak Evaluation - Identified and Unidentfied

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.58	4989	51226	0.71	93.19	2.06E-01	2.49E-02	7.7	1.43E+00
2	1	74.96	2858	35428	0.67	149.83	3.49E+00	1.43E-02	10.1	2.59E+00
3	10	85.57	4415	72939	1.67	171.01	5.06E+00	2.20E-02	12.1	3.44E+01
4	10	88.07	154794	33915	0.76	176.01	5.39E+00	7.73E-01	0.3	
5	1	122.09	105952	56401	0.79	243.91	7.97E+00	5.29E-01	0.5	2.91E+00
6	1	136,48	13314	45983	0.78	272.65	8.21E+00	6.65E-02	2.9	4.73E-01
7	1	165.86	25526	49624	0.83	331.30	8.00E+00	1.27E-01	1.7	6.24E-01
8	1	310.50	1311	28512	0.92	620.13	5.27E+00	6.54E-03	20.6	2.48E+00
9	1	391.71	22323	45189	1.05	782.32	4.33E+00	1.11E-01	1.9	9.26E-01
10	8	510.92	5205	46624	2.32	1020.48	3.44E+00	2.60E-02	8.9	1.27E+00
11	8	513.91	1724	19763	1.08	1026.44	3.42E+00	8.60E-03	13.3	
12	1	661.55	776934	37953	1.32	1321.48	2.72E+00	3.88E+00	0.1	2.25E+01
13	1	897.98	22837	31299	1.57	1794.09	2.03E+00	1.14E-01	1.7	2.35E+00
14	1	1173.32	500545	19886	1.75	2344.81	1.55E+00	2.50E+00	0.2	2.91E+01
15	1	1332,60	447055	7966	1.87	2663.50	1.36E+00	2.23E+00	0.2	3.48E+01
16	1	1460.82	1361	2233	2.07	2920.14	1.25E+00	6.79E-03	7.6	1.11E+00
17	1	1835.93	12509	1930	2.24	3671.32	1.02E+00	6.24E-02	1.2	2.42E+00

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-MAR-2021 08:33:36.47 TBE13 31-TP10727B HpGe ****** Aquisition Date/Time: 4-MAR-2021 08:26:35.99

LIMS No., Customer Name, Client ID: S25 BOTTLE 5ML MIXED GAMMA CALIBRATION

Sample ID : 13S25030421 Smple Date: 1-JUN-2019 12:00:00.0

 Sample Type
 : PCI
 Geometry
 : 13S25030421

 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 13BG030521MT

 Start Channel
 : 80
 Energy Tol
 : 2.00000
 Real Time
 : 2 07:44:10.81

 End Channel
 : 4090
 Pk Srch Sens: 9.00000
 Live time
 : 2 07:39:05.39

MDA Multiple : 4.6600 Library Used: CALIBRATION

Peak Evaluation - Identified and Unidentfied

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.58	4989	51226	0.71	93.19	2.06E-01	2.49E-02	7.7	1.43E+00
2	1	74.96*	1332	35428	0.67	149.83	3.49E+00	6.65E-03	22.2	2.59E+00
3	10	85.57*	3228	72939	1.67	171.01	5.06E+00	1.61E-02	16.7	3.44E+01
4	10	88.07*	154300	33915	0.76	176.01	5.39E+00	7.70E-01	0.3	
5	1	122.09	105952	56401	0.79	243.91	7.97E+00	5.29E-01	0.5	2.91E+00
6	1	136.48	13314	45983	0.78	272.65	8.21E+00	6.65E-02	2.9	4.73E-01
7	1	165.86	25526	49624	0.83	331.30	8.00E+00	1.27E-01	1.7	6.24E-01
8	1	310.50	1311	28512	0.92	620.13	5.27E+00	6.54E-03	20.6	2.48E+00
9	1	391.71	22323	45189	1.05	782.32	4.33E+00	1.11E-01	1.9	9.26E-01
10	8	510.92*	115	46624	2.32	1020.48	3.44E+00	5.75E-044	119.6	1.27E+00
11	8	513.91	1724	19763	1.08	1026.44	3.42E+00	8.60E-03	13.3	
12	1	661.55	776934	37953	1.32	1321.48	2.72E+00	3.88E+00	0.1	2.25E+01
13	1	897.98	22837	31299	1.57	1794.09	2.03E+00	1.14E-01	1.7	2.35E+00
14	1	1173.32	500545	19886	1.75	2344.81	1.55E+00	2.50E+00	0.2	2.91E+01
15	1	1332.60	447055	7966	1.87	2663.50	1.36E+00	2.23E+00	0.2	3.48E+01
16	1	1460.82*	252	2233	2.07	2920.14	1.25E+00	1.26E-03	46.5	1.11E+00
17	1	1835.93	12509	1930	2.24	3671.32	1.02E+00	6.24E-02	1.2	2.42E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

MUCTICE I	γpe;						
-	-				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	154300	3.72*	5.388E+00	3.842E+02	1.006E+03	0.63
03-CO57	122.06	105952	85.51*	7.969E+00	7.761E+00	4.022E+01	1.02
04-CE139	165.85	25526	80.35*	7.997E+00	1.983E+00	5.051E+01	3.39
06-SN113	391.69	22323	64.90*	4.330E+00	3.965E+00	1.905E+02	3.81
07-SR85	513.99	1724	99.27*	3.420E+00	2.534E-01	2.450E+02	26.51
08-CS137	661.65	776934	85.12*	2.722E+00	1.674E+02	1.743E+02	0.25
09-Y88	898.02	22837	93.40*	2.029E+00	6.014E+00	3.928E+02	3.37
10-CO60	1173.22	500545	100.00	1.549E+00	1.613E+02	2.034E+02	0.31
	1332.49	447055	100.00*	1.362E+00	1.638E+02	2.065E+02	0.31
12-Y88	1836.01	1.2509	99.38*	1.023E+00	6.144E+00	4.013E+02	2.41

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 13S25030421 Acquisition date: 4-MAR-2021 08:26:35

Total number of lines in spectrum 17
Number of unidentified lines 7
Number of lines tentatively identified by NID 10 58.82%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	2.62	3.842E+02	1.006E+03	0.006E+03	0.63
03-CO57	270.90D	5.18	7.761E+00	4.022E+01	0.041E+01	1.02
04-CE139	137.66D	25.5	1.983E+00	5.051E+01	0.171E+01	3.39
06-SN113	115.10D	48.1	3.965E+00	1.905E+02	0.073E+02	3.81
07-SR85	64.84D	967.	2.534E-01	2.450E+02	0.649E+02	26.51
08-CS137	30.17Y	1.04	1.674E+02	1.743E+02	0.004E+02	0.25
09-Y88	106.65D	65.3	6.014E+00	3.928E+02	0.132E+02	3.37
10-CO60	5.27Y	1.26	1.638E+02	2.065E+02	0.006E+02	0.31
12-Y88	106.65D	65.3	6.144E+00	4.013E+02	0.097E+02	2.41

Total Activity : 7.415E+02 2.707E+03

Grand Total Activity : 7.415E+02 2.707E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 13S25030421 Page: 3
Acquisition date: 4-MAR-2021 08:26:35

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	46.58	4989	51226	0.71	93.19	-		2.49E-02			
1 10	74.96 85.57	1332 3228	35428 72939	0.67 1.67	149.83 171.01			6.65E-03 1.61E-02			
1	136.48	13314	45983	0.78	272.65			6.65E-02			
1	310.50	1311	28512	0.92	620.13			6.54E-03			
8	510.92	115	46624	2.32	1020.48	1012	18	5.75E-04	* * * *	3.44E+00	
1	1460.82	252	2233	2.07	2920.14	2914	13	1.26E-03	93.1	1.25E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 17
Number of unidentified lines 7
Number of lines tentatively identified by NID 10 58.82%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	2.62	3.842E+02	1.006E+03	0.006E+03	0.63
03-CO57	270.90D	5.18	7.761E+00	4.022E+01	0.041E+01	1.02
04-CE139	137.66D	25.5	1.983E+00	5.051E+01	0.171E+01	3,39
06-SN113	115.10D	48.1	3.965E+00	1.905E+02	0.073E+02	3.81
07-SR85	64.84D	967.	2.534E-01	2.450E+02	0.649E+02	26.51
08-CS137	30.17Y	1.04	1.674E+02	1.743E+02	0.004E+02	0.25
09-Y88	106.65D	65.3	6.014E+00	3.928E+02	0.132E+02	3.37
10-CO60	5.27Y	1.26	1.638E+02	2.065E+02	0.006E+02	0.31
12-Y88	106.65D	65.3	6.144E+00	4.013E+02	0.097E+02	2.41
	Total Acti	Lvity :	7.415E+02	2.707E+03		

Grand Total Activity : 7.415E+02 2.707E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109	1.006E+03	6.368E+00	5.037E+00	0.000E+00	199.787
03-CO57	4.022E+01	4.086E-01	2.913E-01	0.000E+00	138.061
04-CE139	5.051E+01	1.712E+00	1.505E+00	0.000E+00	33.569
06-SN113	1.905E+02	7.250E+00	6.868E+00	0.000E+00	27.740
07-SR85	2.450E+02	6.495E+01	1.023E+02	0.000E+00	2.394
08-CS137	1.743E+02	4.422E-01	1.464E-01	0.000E+00	1190.429
09-Y88	3.928E+02	1.324E+01	1.260E+01	0.000E+00	31.174
10-CO60	2.065E+02	6.499E-01	1.422E-01	0.000E+00	1452.522
12-Y88	4.013E+02	9.652E+00	5.648E+00	0.000E+00	71.048

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.I (BQ/TOTAL) Ide		MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	-2.898E-01	4.645E-01	7.886E-01	0.000E+00	-0.368
05-HG203	-2.264E+02	7.343E+02	1.213E+03	0.000E+00	-0.187

```
,03/10/2021 08:33,06/01/2019 12:00,
                                                           1.000E+00,S25 BOTTLE 5ML
A,13S25030421
                   , CALIBRATION
                                         ,03/10/2021 08:32,13525030421
B,13S25030421
                                              5.037E+00,,
C,02-CD109,YES,
                   1.006E+03,
                                6.368E+00,
                                                            199.787
                                              2.913E-01,,
C,03-CO57 ,YES,
                   4.022E+01,
                                4.086E-01,
                                                            138.061
C,04-CE139,YES,
                   5.051E+01,
                                1.712E+00,
                                              1.505E+00,,
                                                             33.569
C,06-SN113,YES,
                   1.905E+02,
                                7.250E+00,
                                              6.868E+00,,
                                                             27.740
                                              1.023E+02,,
C,07-SR85 ,YES,
                   2.450E+02,
                                6.495E+01,
                                                              2.394
C,08-CS137,YES,
                                              1.464E-01,,
                                                           1190.429
                   1.743E+02,
                                4.422E-01,
         , YES,
                                              1.260E+01,,
                                                             31.174
C,09-Y88
                   3.928E+02,
                                1.324E+01,
                   2.065E+02,
                                 6.499E-01,
                                              1.422E-01,, 1452.522
C,10-CO60 ,YES,
                   4.013E+02,
                                9.652E+00,
                                              5.648E+00,,
C,12-Y88 ,YES,
                                                             71.048
                                              7.886E-01,,
                                                             -0.368
C,01-AM241,NO,
                  -2.898E-01,
                                4.645E-01,
                                7.343E+02,
                                              1.213E+03,,
                                                             -0.187
C,05-HG203,NO,
                  -2.264E+02,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

S25 Bottle

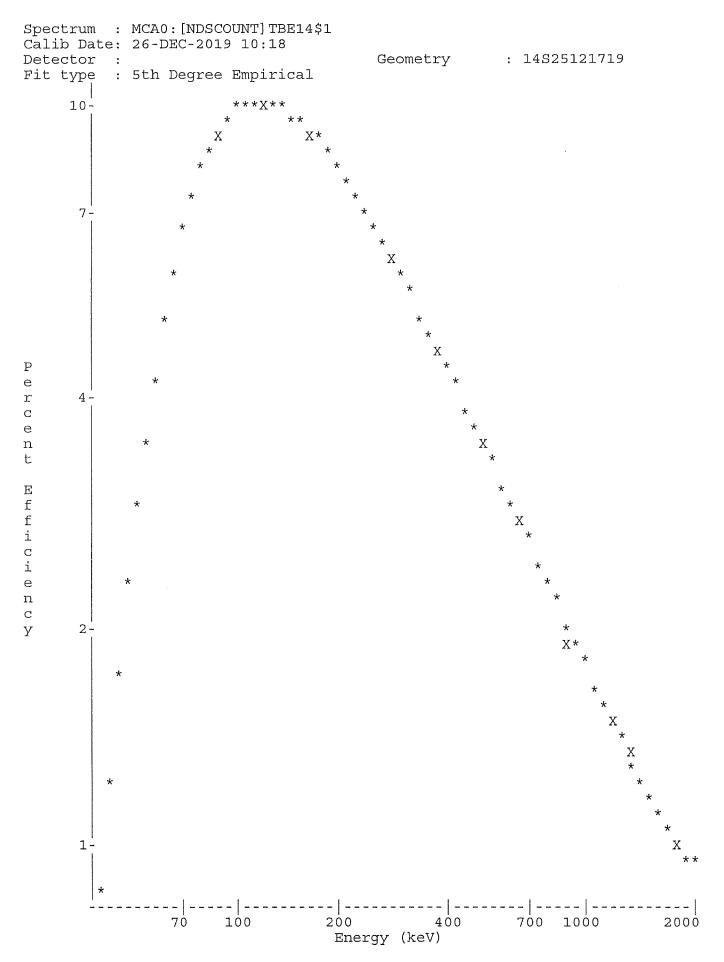
		Orig. Wt	5.1617	Volume	50				
		Wt Used	4,4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1006.0	-0.06%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	39.9	0.04%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	51.1	0.21%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	146.7	-5.99%
Sn-113	115.09d	391.7	280		64,90%	190.62	123.72	190.2	-0.22%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	243.7	-0.94%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	175.7	2.38%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	393.7	-3.08%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	203.1	-0.16%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203,64	207.0	1.65%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	401.9	-0.44%

Eff. Name: 14S25121719

Analyst:

KO

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 10:18:27.43 TBE14 54-TP42603C HpGe ****** Aquisition Date/Time: 17-DEC-2019 17:50:38.86


LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Smple Date: 1-JUN-2019 12:00:00.0 Sample ID : 14S25121719

Sample Type : STD Geometry : 14S25121719 Quantity : 1.00000E+00 TOTAL BKGFILE : 14BG112719MT

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.59	4672	6896	0.82	89.97	1.64E+00	3.24E-01	3.3	4.79E+00
2	1	88.04	35463	10516	0.84	172.85	8.86E+00	2.46E+00	0.8	4.00E+00
3	1	122.05	29780	8564	0.87	240.85	1.01E+01	2.07E+00	0.8	4.38E+00
4	1	136.46	3698	7567	0.89	269.66	9.91E+00	2.57E-01	4.7	1.24E+00
5	1	165.85	19824	6625	0.93	328.42	9.15E+00	1.38E+00	1.0	1.01E+00
6	1	255.11	1157	5861	0.95	506.90	6.71E+00	8.04E-02	12.3	3,79E-01
7	1	279.19	5512	6288	1.08	555.04	6.21E+00	3.83E-01	3.1	3.04E+00
8	1	391.70	24307	6255	1,14	780.03	4.54E+00	1.69E+00	0.9	2,52E+00
9	1	514.00	14414	5472	1.23	1024.59	3.48E+00	1.00E+00	1.4	7,45E+00
10	1	661.64	57433	5272	1.37	1319.86	2.70E+00	3.99E+00	0.5	1.58E+01
11	1	814.11	540	2411	1.47	1624.82	2.18E+00	3.75E-02	17.5	1.46E+00
12	1	898.03	28517	4449	1.54	1792.67	1.97E+00	1,98E+00	0.8	1.01E+01
13	1	1173.22	40660	2487	1.72	2343.16	1.49E+00	2.82E+00	0.6	1.86E+01
14	4	1325.51	582	1036	2.68	2647.85	1.32E+00	4.04E-02	13.1	1.27E+01
15	4	1332.48	36574	668	1.86	2661.80	1.32E+00	2.54E+00	0.5	
16	1	1836.00	15871	453	2,16	3669.35	1.01E+00	1.10E+00	0.9	1.15E+01

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 26-DEC-2019 10:19:43.49 TBE14 54-TP42603C HpGe ****** Aquisition Date/Time: 17-DEC-2019 17:50:38.86

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Smple Date: 1-JUN-2019 12:00:00.0 Sample ID : 14S25121719

Sample Type : STD Geometry : 14S25121719 Quantity : 1.00000E+00 TOTAL BKGFILE : 14BG112719MT

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	46.59	4672	6896	0.82	89.97	1.64E+00	3.24E-01	3.3	4.79E+00
2	1	88.04*	35436	10516	0.84	172.85	8,86E+00	2.46E+00	0.8	4.00E+00
3	1	122.05	29780	8564	0.87	240,85	1.01E+01	2.07E+00	0.8	4.38E+00
4	1	136.46	3698	7567	0.89	269,66	9.91E+00	2.57E-01	4.7	1,24E+00
5	1	165.85	19824	6625	0.93	328,42	9.15E+00	1.38E+00	1.0	1.01E+00
6	1	255.11	1157	5861	0.95	506.90	6.71E+00	8.04E-02	12.3	3.79E-01
7	1	279.19	5512	6288	1.08	555.04	6.21E+00	3.83E-01	3.1	3.04E+00
8	1	391.70	24307	6255	1.14	780.03	4.54E+00	1.69E+00	0.9	2.52E+00
9	1	514.00	14414	5472	1.23	1024.59	3.48E+00	1.00E+00	1.4	7.45E+00
10	1	661.64	57433	5272	1.37	1319.86	2.70E+00	3.99E+00	0.5	1.58E+01
11	1	814.11	540	2411	1.47	1624.82	2.18E+00	3.75E-02	17.5	1.46E+00
12	1	898.03	28517	4449	1.54	1792.67	1.97E+00	1.98E+00	0.8	1.01E+01
13	1	1173.22	40660	2487	1.72	2343.16	1.49E+00	2.82E+00	0.6	1.86E+01
14	4	1325.51	582	1036	2.68	2647.85	1.32E+00	4.04E-02	13.1	1,27E+01
15	4	1332.48	36574	668	1.86	2661.80	1.32E+00	2.54E+00	0.5	
16	1	1836.00	15871	453	2.16	3669.35	1.01E+00	1.10E+00	0.9	1.15E+01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

-	-				Uncorrected	Decay Corr	2-Siqma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
02-CD109	88.03	35436	3.72*	8.862E+00	7.464E+02	1.006E+03	1.52
03-CO57	122.06	29780	85.51*	1.009E+01	2.398E+01	3.993E+01	1.65
04-CE139	165.85	19824	80.35*	9.153E+00	1.872E+01	5.107E+01	2.06
05-HG203	279.20	5512	81.46*	6.208E+00	7.569E+00	1.467E+02	6.21
06-SN113	391.69	24307	64.90*	4.543E+00	5.725E+01	1.902E+02	1.86
07-SR85	513.99	14414	99.27*	3.485E+00	2.893E+01	2.437E+02	2.75
08-CS137	661.65	57433	85.12*	2.700E+00	1.735E+02	1.757E+02	1.01
09-Y88	898.02	28517	93.40*	1.967E+00	1.078E+02	3.937E+02	1.58
10-CO60	1173.22	40660	100.00	1.494E+00	1.890E+02	2.031E+02	1.14
	1332.49	36574	100.00*	1.318E+00	1.927E+02	2.070E+02	1.08
12-Y88	1836.01	15871	99.38*	1.008E+00	1.100E+02	4.019E+02	1.73

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 14S25121719 Acquisition date: 17-DEC-2019 17:50:38

68.75%

Total number of lines in spectrum 16
Number of unidentified lines 5
Number of lines tentatively identified by NID 11

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462,90D	1.35	7.464E+02	1.006E+03	0.015E+03	1.52
03-CO57	270,90D	1.67	2.398E+01	3.993E+01	0.066E+01	1.65
04-CE139	137,66D	2.73	1.872E+01	5.107E+01	0.105E+01	2.06
05-HG203	46,61D	19.4	7.569E+00	1.467E+02	0.091E+02	6.21
06-SN113	115.10D	3.32	5.725E+01	1.902E+02	0.035E+02	1.86
07-SR85	64.84D	8.42	2.893E+01	2.437E+02	0.067E+02	2.75
08-CS137	30.17Y	1.01	1.735E+02	1.757E+02	0.018E+02	1.01
09-Y88	106.65D	3.65	1.078E+02	3.937E+02	0.062E+02	1.58
10-CO60	5,27Y	1.07	1.927E+02	2.070E+02	0.022E+02	1.08
12-Y88	106.65D	3.65	1.100E+02	4.019E+02	0.070E+02	1.73

Grand Total Activity : 1.467E+03 2.856E+03

Flags: "K" = Keyline not found "M" = Manually accepted

Total Activity: 1.467E+03 2.856E+03

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 14S25121719 Page: 3
Acquisition date: 17-DEC-2019 17:50:38

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff]	Flags
1 1 1	46.59 136.46 255.11 814.11 1325.51	4672 3698 1157 540 582		0.89 0.95	269.66 506.90 1624.82	265 503 1620	10 9 10	2.57E-01 8.04E-02 3.75E-02	9.4 24.6 35.0	1.64E+00 9.91E+00 6.71E+00 2.18E+00 1.32E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 5
Number of lines tentatively identified by NID 11 68.75%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
02-CD109	462.90D	$1.3\bar{5}$	7.464E+02	1.006E+03	0.015E+03	1.52
03-CO57	270.90D	1.67	2.398E+01	3.993E+01	0.066E+01	1.65
04-CE139	137.66D	2.73	1.872E+01	5.107E+01	0.105E+01	2.06
05-HG203	46,61D	19.4	7.569E+00	1.467E+02	0.091E+02	6.21
06-SN113	115,10D	3.32	5.725E+01	1.902E+02	0.035E+02	1.86
07-SR85	64.84D	8.42	2.893E+01	2.437E+02	0.067E+02	2.75
08-CS137	30.17Y	1.01	1.735E+02	1.757E+02	0.018E+02	1.01
09-Y88	106.65D	3.65	1.078E+02	3.937E+02	0.062E+02	1.58
10-CO60	5.27Y	1.07	1.909E+02	2.051E+02	0.016E+02	0.79
12-Y88	106.65D	3,65	1.100E+02	4.019E+02	0.070E+02	1.73

Total Activity: 1.465E+03 2.854E+03

Grand Total Activity : 1.465E+03 2.854E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
02-CD109	1.006E+03	1.533E+01	9.506E+00	0.000E+00	105.834
03-CO57	3.993E+01	6.577E-01	4.039E-01	0.000E+00	98.864
04-CE139	5.107E+01	1.051E+00	7.760E-01	0.000E+00	65.808
05-HG203	1.467E+02	9.105E+00	7.581E+00	0.000E+00	19.347
06-SN113	1.902E+02	3.544E+00	2.145E+00	0.000E+00	88.653

07-SR85 08-CS137 09-Y88 10-CO60 12-Y88	2.437E+02 1.757E+02 3.937E+02 2.051E+02 4.019E+02 entified Nuclides	6.705E+00 1.777E+00 6.236E+00 1.611E+00 6.973E+00	4.296E+00 7.350E-01 3.279E+00 6.845E-01 1.890E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	56.725 239.076 120.049 299.620 212.590
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided		MDA (BQ/TOTAL)	MDA error	Act/MDA
01-AM241	3.895E-01	8.108E-01	1.321E+00	0.000E+00	0.295

```
,12/26/2019 10:19,06/01/2019 12:00,
                                                            1.000E+00,S25 5ML MIXED
A, 14S25121719
                   , CALIBRATION
                                          ,12/26/2019 10:18,14S25121719
B, 14S25121719
                                                             105.834
                                 1.533E+01,
                                               9.506E+00,,
                   1.006E+03,
C,02-CD109,YES,
                                                               98.864
                                               4.039E-01,,
C,03-C057,YES,
                   3.993E+01,
                                 6.577E-01,
                                                               65.808
C,04-CE139,YES,
                   5.107E+01,
                                 1.051E+00,
                                               7.760E-01,,
                                               7.581E+00,,
                                                               19.347
                                 9.105E+00,
C, 05-HG203, YES,
                   1.467E+02,
                                                               88,653
                                               2.145E+00,,
C,06-SN113,YES,
                   1.902E+02,
                                 3.544E+00,
                                                               56.725
                                               4.296E+00,,
                   2.437E+02,
                                 6.705E+00,
C,07-SR85 ,YES,
                                               7.350E-01,,
                                                              239.076
                   1.757E+02,
                                 1.777E+00,
C,08-CS137,YES,
                                               3.279E+00,,
                   3.937E+02,
                                 6.236E+00,
                                                              120.049
C,09-Y88
          ,YES,
                                               6.845E-01,,
                                                              299.620
                   2.051E+02,
                                 1.611E+00,
C,10-CO60 ,YES,
          , YES,
                                               1.890E+00,,
                                                              212.590
                   4.019E+02,
                                 6.973E+00,
C, 12-Y88
                                 8.108E-01,
                                               1.321E+00,,
                                                                0.295
C,01-AM241,NO,
                   3.895E-01,
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

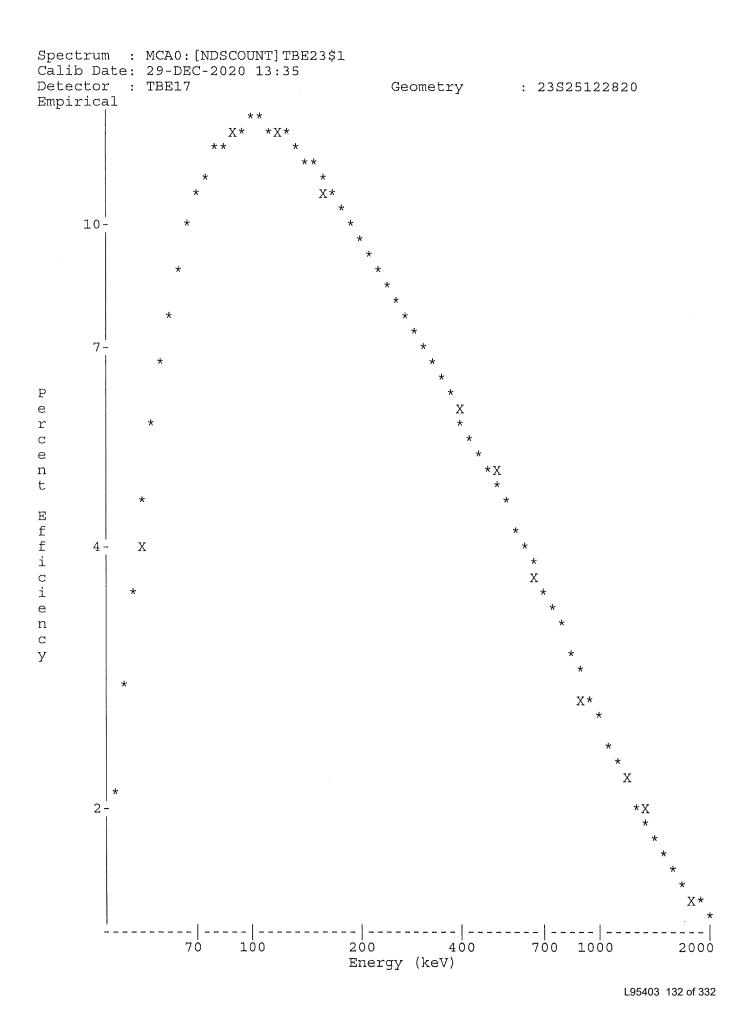
S25 Bottle

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	.ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Pb-210	22.26Y	46.6	72.1		4.18%	762.12	31.86	787.2	3.29%
Cd-109	462.9d	88.0	84.75		3.72%	1006.61	37.45	1001.0	-0.56%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.7	1.84%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	49.9	-2.05%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62		
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	191.2	0.30%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	262.8	6.82%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	172.9	0.75%
Y-88	106,65d	898.0	858.7		93.40%	406.22	379.41	392.2	-3.45%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	203.5	0.04%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	207.2	1.75%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	400.7	-0.74%

Eff. Name: 23S25122820

Analyst: KOJ

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-DEC-2020 13:35:55.26 TBE23 03017322 HpGe ******* Aquisition Date/Time: 28-DEC-2020 18:21:02.51 _____


LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

Sample ID : 23S25122820 Smple Date: 1-JUN-2019 12:00:00.0

Sample Type : STD Geometry : 23S25122820 Quantity : 1.00000E+00 TOTAL BKGFILE : 23BG121820MT End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 19:11:37.83 MDA Multiple : 4.6600 Library Used: CALIBRATION_PB

Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.53	86419	50241	0.92	92.99	4.10E+00	1.25E+00	0.6	
2	0	88.12	138391	33792	0.84	176.13	1,27E+01	2.00E+00	0.4	
3	0	122.12	68998	23643	0.85	244.08	1.26E+01	9.99E-01	0.6	
4	0	136.52	8600	18857	0.90	272.86	1.20E+01	1.24E-01	3.1	
5	0	165.87	16442	17766	1.05	331.53	1.08E+01	2.38E-01	1.7	
6	0	238.50	1672	14948	1.01	476.73	8.50E+00	2.42E-02	12.4	
7	0	255.14	919	9890	1.16	509.98	8.10E+00	1.33E-02	16.6	
8	0	391.65	15689	19175	1.13	782.93	5.90E+00	2.27E-01	1.9	
9	8	510.96	2394	16558	2.57	1021.50	4.76E+00	3.46E-02	11.3	4.72E-01
10	8	513.94	1795	8681	1.18	1027.47	4.74E+00	2.60E-02	9.1	
11	0	661.54	371403	14393	1.31	1322.68	3.79E+00	5.38E+00	0.2	
12	0	898.01	16812	13215	1.45	1795.77	2.82E+00	2.43E-01	1.6	
13	0	1173.30	247064	7466	1.63	2346.71	2.16E+00	3.58E+00	0.2	
14	0	1332.58	223705	3266	1.72	2665.57	1.92E+00	3.24E+00	0.2	
15	0	1461.05	254	975	1.45	2922,81	1.78E+00	3.68E-03	24.6	
16	0	1835.94	10026	1055	1.99	3673.69	1.55E+00	1.45E-01	1.3	

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-DEC-2020 13:41:19.35

TBE23 03017322 HpGe ****** Aquisition Date/Time: 28-DEC-2020 18:21:02.51 _____

LIMS No., Customer Name, Client ID: S25 5ML MIXED GAMMA CALIBRATION

: 23S25122820 Smple Date: 1-JUN-2019 12:00:00.0 Sample ID

Geometry : 23S25122820 Sample Type : STD Quantity : 1.00000E+00 TOTAL BKGFILE : 23BG121820MT End Channel: 4090 Pk Srch Sens: 9.00000 Live time: 0 19:11:37.83 MDA Multiple: 4.6600 Library Used: CALIBRATION_PB

Peak Evaluation - Identified and Unidentified

D)-	T + -	Enovari	77 200 70	Bkqnd	ועען גוינים	Channel	%Eff	Cts/Sec	\$ E ~~	Fit
PK	It	Energy	Area	Бкупа	L MUIM	Chamier	QETT	CLB/BEC	9 D.T.T.	LTC
1	0	46.53*	85939	50241	0.92	92.99	4.10E+00	1.24E+00	0.6	
2	0	88.12*	138155	33792	0.84	176.13	1.27E+01	2.00E+00	0.4	
3	0	122.12	68998	23643	0.85	244.08	1.26E+01	9.99E-01	0.6	
4	0	136.52	8600	18857	0.90	272.86	1.20E+01	1.24E-01	3.1	
5	0	165.87	16442	17766	1.05	331.53	1.08E+01	2.38E-01	1.7	
6	0	238.50*	202	14948	1.01	476.73	8.50E+00	2.93E-03	103.4	
7	0	255.14	919	9890	1.16	509.98	8.10E+00	1.33E-02	16.6	
8	0	391.65	15689	19175	1.13	782.93	5.90E+00	2.27E-01	1.9	
9	8	510.96*	546	16558	2.57	1021.50	4.76E+00	7.90E-03	50.2	4.72E-01
10	8	513.94	1795	8681	1.18	1027.47	4.74E+00	2.60E-02	9.1	
11	0	661.54	371403	14393	1.31	1322.68	3.79E+00	5.38E+00	0.2	
12	0	898.01	16812	13215	1.45	1795.77	2.82E+00	2.43E-01	1.6	
13	0	1173.30	247064	7466	1.63	2346.71	2.16E+00	3.58E+00	0.2	
14	0	1332.58	223705	3266	1.72	2665.57	1.92E+00	3.24E+00	0.2	
15	0	1461.05*	53	975	1.45	2922.81	1.78E+00	7.63E-04	122.0	
16	0	1835.94	10026	1055	1.99	3673.69	1.55E+00	1.45E-01	1.3	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
03-PB210	46.50	85939	4.05*	4.098E+00	7.495E+02	7.872E+02	1.26
04-CD109	88.03	138155	3.72*	1.273E+01	4.223E+02	1.001E+03	0.74
05-CO57	122.06	68998	85.51*	1.256E+01	9.296E+00	4.065E+01	1.13
06-CE139	165.85	16442	80.35*	1.082E+01	2.737E+00	4.992E+01	3.31
08-SN113	391.69	15689	64.90*	5.897E+00	5.932E+00	1.912E+02	3.77
09-SR85	513.99	1795	99.27*	4.736E+00	5.524E-01	2.628E+02	18.12
10-CS137	661.65	371403	85.12*	3.787E+00	1.667E+02	1.729E+02	0.36
11-Y88	898.02	16812	93.40*	2.818E+00	9.244E+00	3.922E+02	3.14
12-CO60	1173.22	247064	100.00	2.163E+00	1.653E+02	2.035E+02	0.43
	1332.49	223705	100.00*	1.923E+00	1.684E+02	2.072E+02	0.44
14-Y88	1836.01	10026	99.38*	1.546E+00	9.444E+00	4.007E+02	2.55

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID: 23S25122820 Acquisition date: 28-DEC-2020 18:21:02

Total number of lines in spectrum 16
Number of unidentified lines 5

Number of lines tentatively identified by NID 11 68.75%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
03-PB210	22.26Y	1.05	7.495E+02	7.872E+02	0.099E+02	1.26
04-CD109	462.90D	2.37	4.223E+02	1.001E+03	0.007E+03	0.74
05-CO57	270.90D	4.37	9.296E+00	4.065E+01	0.046E+01	1.13
06-CE139	137.66D	18.2	2.737E+00	4.992E+01	0.165E+01	3.31
08-SN113	115.10D	32.2	5.932E+00	1.912E+02	0.072E+02	3.77
09-SR85	64.84D	476.	5.524E-01	2.628E+02	0.476E+02	18.12
10-CS137	30.17Y	1.04	1.667E+02	1.729E+02	0.006E+02	0.36
11-Y88	106.65D	42.4	9.244E+00	3.922E+02	0.123E+02	3.14
12-C060	5.27Y	1.23	1.684E+02	2.072E+02	0.009E+02	0.44
14-Y88	106.65D	42.4	9.444E+00	4.007E+02	0.102E+02	2.55
	m - 4 - 7 7 - 4 - 4		1 5445.00	2 5065.02		

Total Activity: 1.544E+03 3.506E+03

Grand Total Activity: 1.544E+03 3.506E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 23S25122820 Page: 3
Acquisition date: 28-DEC-2020 18:21:02

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff Fla	gs
0	136.52	8600	18857	0.90	272.86	269	9	1.24E-01	6.2	1.20E+01	
0	238.50	202	14948	1.01	476.73	474	7	2.93E-03	***	8.50E+00	
0	255.14	919	9890	1.16	509.98	508	5	1.33E-02	33.2	8.10E+00	
8	510.96	546	16558	2.57	1021.50	1015	17	7.90E-03	***	4.76E+00	
0	1461.05	53	975	1.45	2922.81	2917	11	7.63E-04	***	1.78E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 16
Number of unidentified lines 5
Number of lines tentatively identified by NID 11 68.75%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
03-PB210	22.26Y	1.05	7.495E+02	7.872E+02	0.099E+02	1.26
04-CD109	462.90D	2.37	4.223E+02	1.001E+03	0.007E+03	0.74
05-CO57	270.90D	4.37	9.296E+00	4.065E+01	0.046E+01	1.13
06-CE139	137.66D	18.2	2.737E+00	4.992E+01	0.165E+01	3.31
08-SN113	115.10D	32.2	5.932E+00	1.912E+02	0.072E+02	3.77
09-SR85	64.84D	476.	5.524E-01	2.628E+02	0.476E+02	18.12
10-CS137	30.17Y	1.04	1.667E+02	1.729E+02	0.006E+02	0.36
11-Y88	106.65D	42.4	9.244E+00	3.922E+02	0.123E+02	3.14
12-CO60	5.27Y	1.23	1.684E+02	2.072E+02	0.009E+02	0.44
14-Y88	106.65D	42.4	9.444E+00	4.007E+02	0.102E+02	2.55
	Total Acti	.vity :	1.544E+03	3.506E+03		

Grand Total Activity: 1.544E+03 3.506E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (BQ/TOTAL)	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA
03-PB210	7.872E+02	9.939E+00	6.075E+00	0.000E+00	129.589
04-CD109	1.001E+03	7.361E+00	4.462E+00	0.000E+00	224.459
05-CO57	4.065E+01	4.593E-01	3.123E-01	0.000E+00	130.166
06-CE139	4.992E+01	1.654E+00	1.537E+00	0.000E+00	32.476
08-SN113	1.912E+02	7.215E+00	6.389E+00	0.000E+00	29.923

				· · · · · · · · · · · · · · · · · · ·					
09-SR85 10-CS137 11-Y88 12-CO60 14-Y88	2.628E+02 1.729E+02 3.922E+02 2.072E+02 4.007E+02	4.760E+01 6.173E-01 1.232E+01 9.144E-01 1.022E+01	6.769E+01 1.925E-01 1.095E+01 1.834E-01 4.758E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	3.882 898.197 35.833 1129.809 84.219				
Non-Identified Nuclides									
Nuclide	Key-Line Activity K.L. (BQ/TOTAL) Ided	Act error	MDA (BQ/TOTAL)	MDA error	Act/MDA				
01-CO57 02-CE139 07-HG203	0.000E+00 -6.502E+01 1.778E+02	0.000E+00 5.161E+01 4.019E+02	1.333E+05 8.172E+01 6.518E+02	0.000E+00 0.000E+00 0.000E+00	0.000 -0.796 0.273				

```
A,23S25122820
                   ,12/29/2020 13:41,06/01/2019 12:00, 1.000E+00,S25 5ML MIXED
                   , CALIBRATION PB
                                         ,12/29/2020 13:35,23S25122820
B,23S25122820
                                 9.939E+00,
C,03-PB210,YES,
                   7.872E+02,
                                              6.075E+00,,
                                                            129.589
                                 7.361E+00,
                                              4.462E+00,,
C,04-CD109,YES,
                                                            224.459
                   1.001E+03,
                                              3.123E-01,,
C,05-CO57 ,YES,
                   4.065E+01,
                                 4.593E-01,
                                                            130.166
                                              1.537E+00,,
C,06-CE139,YES,
                   4.992E+01,
                                 1.654E+00,
                                                             32.476
C,08-SN113,YES,
                   1.912E+02,
                                 7.215E+00,
                                               6.389E+00,,
                                                             29.923
C,09-SR85 ,YES,
                   2.628E+02,
                                 4.760E+01,
                                              6.769E+01,,
                                                              3.882
C, 10-CS137, YES,
                   1.729E+02,
                                 6.173E-01,
                                              1.925E-01,,
                                                            898.197
          , YES,
                                              1.095E+01,,
C,11-Y88
                   3.922E+02,
                                 1.232E+01,
                                                             35.833
C,12-CO60 ,YES,
                   2.072E+02,
                                 9.144E-01,
                                              1.834E-01,, 1129.809
         ,YES,
                                               4.758E+00,,
C, 14-Y88
                   4.007E+02,
                                 1.022E+01,
                                                             84.219
                                               8.172E+01,,
C,02-CE139,NO ,
                  -6.502E+01,
                                 5.161E+01,
                                                             -0.796
                                              6.518E+02,,
C,07-HG203,NO,
                   1.778E+02,
                                 4.019E+02,
                                                              0.273
```

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

3.5L MARINELLI

		Orig. Wt	5.1617	Volume	50				
		Wt Used	4.4184	Aliquot	5.0000	Certificate	Aliquoted	Actual	Percent
	Half-Life	Energy(KeV)	ate G/si	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff
Pb-210	22.26Y	46.6	72.1		4.18%	762.12	31.86	765.5	0.44%
Cd-109	462.9d	0.88	84.75		3.72%	1006,61	37.45	1001.0	-0.56%
Co-57	271.8d	122.1	77.25		85.51%	39.92	34.13	40.0	0.26%
Ce-139	137.64d	165.9	92.68		80.35%	50.96	40.95	50.1	-1.72%
Hg-203	46.6d	279.2	273		77.30%	156.04	120.62	152,0	-2.59%
Sn-113	115.09d	391.7	280		64.90%	190.62	123.72	195.8	2.72%
Sr-85	64.849	514.0	547.9		98.40%	246.02	242.08	238.1	-3.22%
Cs-137	30.17y	661.6	330.6		85.12%	171.61	146.07	175.2	2.09%
Y-88	106.65d	898.0	858.7		93.40%	406.22	379.41	406.9	0.17%
Co-60	5.27y	1173.2	460.4		100.00%	203.42	203.42	204.5	0.53%
Co-60	5.27y	1332.5	460.9		100.00%	203.64	203.64	202.1	-0.76%
Y-88	106.65d	1836.0	908		99.38%	403.69	401.19	402.6	-0.27%

Eff. Name: 1135L1203.9

Analyst: KO

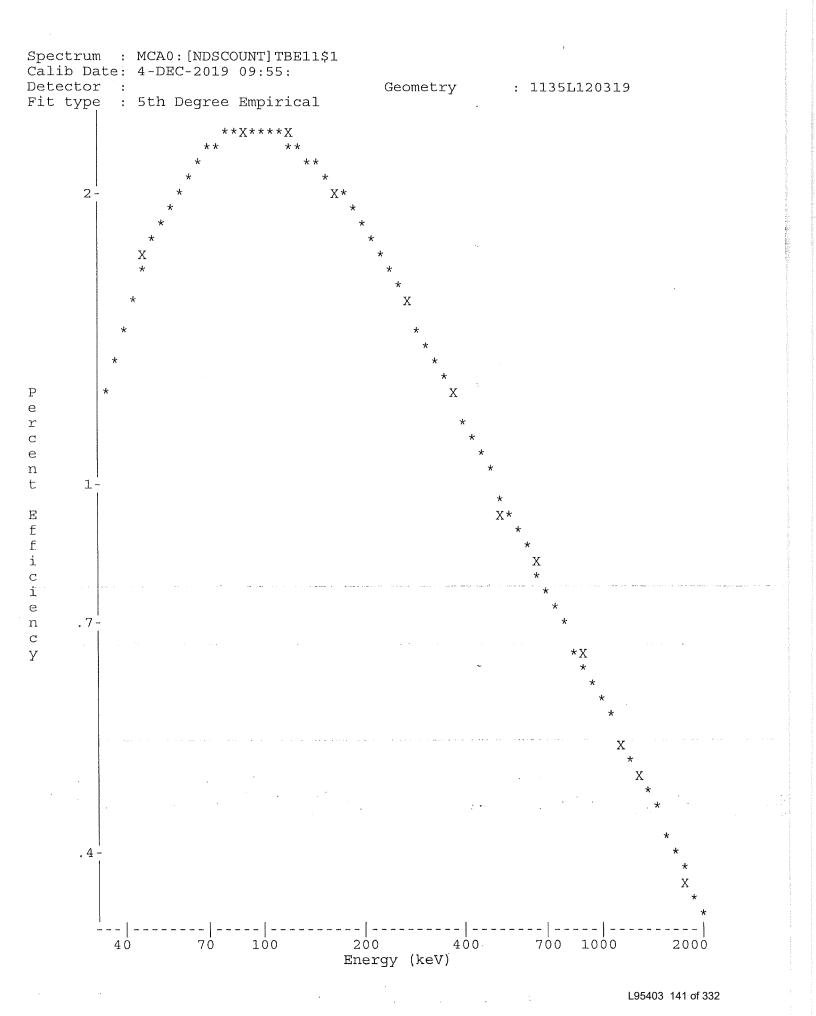
Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 4-DEC-2019 09:55:50.82 TBE11 31-TP20610B HpGe ****** Aquisition Date/Time: 3-DEC-2019 18:03:23.85

LIMS No., Customer Name, Client ID: 3.5L 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 1135L120319

 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 11BG112719MT


 Start Channel
 : 70
 Energy Tol
 : 2.00000
 Real Time
 : 0 12:01:18.85

 End Channel
 : 4090
 Pk Srch Sens: 7.00000
 Live time
 : 0 12:00:00.00

MDA Multiple : 4.6600 Library Used: CALIBRATION

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.47	23288	21494	1.43	91.94	1.72E+00	5.39E-01	1.4	
2	0	75.04	1490	15930	1.23	149.12	2.30E+00	3,45E-02	13.7	
3	0	88.06	29119	27294	1.39	175.19	2.37E+00	6.74E-01	1.3	
4	0	122.08	21359	20676	1.44	243.27	2.32E+00	4.94E-01	1.5	
5	0	136.54	2384	13793	1,56	272,23	2,25E+00	5.52E-02	8.8	
6	0	165.90	14266	16553	1.51	330.98	2.09E+00	3.30E-01	1.9	
7	0	255.18	1030	9324	1.66		1.63E+00	2.38E-02	17.2	
8	0	279.20	5197	9831	1.56	557.74	•	1,20E-01	3.9	
9	0	391.73	21490	7663	1.62		1,20E+00	4.97E-01	1.1	
10	0	514.03	13669	7212	1.68	1027.72	9.73E-01	3.16E-01	1.6	
11	0	661.65	51118	5928	1.78	1323.12	8.03E-01	1.18E+00	0.6	
12	0	814.14	464	3039	1.73	1628.27		1.07E-02	24.2	
13	0	898.00	31453	5022	1.96	1796.07	6.40E-01	7.28E-01	0.8	
14	0	1173.15	43501	2652	2.15	2346.60	5.26E-01	1.01E+00	0.6	
15	2	1325,28	508	896	2.75	2650.95		1.17E-02	11.8	2.07E+01
16	2	1332.48	39138	949	2.38	2665.36	4.79E-01	9.06E-01	0.5	
17	0	1460.95	307	999	1.89	2922.36	4.47E-01	7.11E-03	23.7	
18	0	1836.04	19366	460		3672.67	3.74E-01	4.48E-01	0.8	

r septembre en respectivo de la compressión de la completa de la completa de la completa de la completa de la c La completa de la completa de completa del la completa del la completa de la completa del la completa de la co

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 4-DEC-2019 10:00:37 78 TBE11 31-TP20610B HpGe ****** Aquisition Date/Time: 3-DEC-2019 18:03:23.85

LIMS No., Customer Name, Client ID: 3.5L 5ML MIXED GAMMA CALIBRATION

 Sample Type
 : STD
 Geometry
 : 1135L120319

 Quantity
 : 1.00000E+00 TOTAL
 BKGFILE
 : 11BG112719MT

 Start Channel
 : 70
 Energy Tol
 : 2.00000
 Real Time
 : 0 12:01:18.85

 End Channel
 : 4090
 Pk Srch Sens: 7.00000
 Live time
 : 0 12:00:00.00

MDA Multiple : 4.6600 Library Used: CALIBRATION PB

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.47*	22623	21494	1,43	91.94	1.72E+00	5.24E-01	1.4	
2	0	75.04*	61	15930	1.23	149.12	2.30E+00	1.41E-033	338.5	
3	0	88.06*	28919	27294	1.39	175.19	237E+00	6.69E-01	1.3	
4	0	122.08	21359	20676	1.44	243.27	2.32E+00	4.94E-01	1.5	
5	0	136.54	2384	13793	1.56	272.23	2.25E+00	5.52E-02	8.8	
6	0	165.90	14266	16553	1.51	330,98	2.09E+00	3.30E-01	1.9	
7	0	255.18	1030	9324	1.66	509.68	1.63E+00	2,38E-02	17.2	
8	0	279.20	5197	9831	1.56	557.74	1,53E+00	1.20E-01	3.9	
9	0	391.73	21490	7663	1.62	782.96	1.20E+00	4.97E-01	1.1	
10	0	514.03	13669	7212	1.68	1027.72	9.73E-01	3.16E-01	1.6	
11	0	661.65	51118	5928	1.78	1323,12	8.03E-01	1.18E+00	0.6	
12	0	814.14	464	3039	1.73	1628.27	6.88E-01	1.07E-02	24.2	
13	0	898.00	31453	5022	1.96	1796.07	6.40E-01	7.28E-01	0.8	
14	0	1173.15	43501	2652	2.15	2346.60	5.26E-01	1.01E+00	0.6	
15	2	1325.28	508	896	2.75	2650.95	4.81E-01	1.17E-02	11.8	2.07E+01
16	2	1332.48	39138	949	2.38	2665.36	4.79E-01	9.06E-01	0.5	
17	0	1460.95*	58	999	1.89	2922.36	4.47E-01	1.35E-03	126.9	
18	0	1836.04	19366	460	2.67	3672.67	3.74E-01	4.48E-01	0.8	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	1						
_	e :				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	BQ/TOTAL	BQ/TOTAL	%Error
03-PB210	46.50	22623	4.05*	1.716E+00	7.535E+02	7,655E+02	2.87
04-CD109	88.03	28919	3.72*	2.374E+00	7.582E+02	1.001E+03	2.52
05-CO57	122.06	21359	85.51*	2.323E+00	2.490E+01	4.002E+01	2.95
06-CE139	165.85	14266	80.35*	2.088E+00	1.968E+01	5.009E+01	3.88
07-HG203	279.20	5197	81.46*	1,533E+00	9.633E+00	1.520E+02	7.89
08-SN113	391.69	21490	64.90*	1.197E+00	6.405E+01	1.958E+02	2.20
09-SR85	513.99	13669	99.27*	9.725E-01	3,277E+01	2.381E+02	3.11
10-CS137	661.65	51118	85.12*	8.027E-01	1.732E+02	1.752E+02	1.12
11-Y88	898.02	31453	93.40*	6.397E-01	1.219E+02	4.069E+02	1.55
12-CO60	1173.22	43501	100.00	5.263E-01	1.913E+02	2.045E+02	1,12
	1332.49	39138	100.00*	4.793E-01	1.890E+02	2.021E+02	1.07
14-Y88	1836.01	19366	99.38*	3.741E-01	1,206E+02	4.026E+02	1.57

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 1135L120319

Page: 2 Acquisition date : 3-DEC-2019 18:03:23

Total number of lines in spectrum 18 Number of unidentified lines 6 Number of lines tentatively identified by NID 12

66.67%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
03-PB210	22.26Y	1.02	7.535E+02	7.655E+02	0.220E+02	2.87
04-CD109	462.90D	1.32	7.582E+02	1.001E+03	0.025E+03	2.52
05-CO57	270,90D	1.61	2.490E+01	4.002E+01	0.118E+01	2.95
06-CE139	137.66D	2.54	1.968E+01	5.009E+01	0.194E+01	3.88
07-HG203	46.61D	15.8	9.633E+00	1.520E+02	0.120E+02	7.89
08-SN113	115.10D	3,06	6.405E+01	1.958E+02	0.043E+02	2.20
09-SR85	64.84D	7.26	3.277E+01	2.381E+02	0.074E+02	3,11
10-CS137	30.17Y	1.01	1.732E+02	1.752E+02	0.020E+^2	1.12
11-Y88	106.65D	3.34	1.219E+02	4.069E+02	0.063E+02	1.55
1,2-CO60	5.27Y	1.07	1.890E+02	2.021E+02	0.022E+02	1.07
1.4 - Y88	106.65D	3,34	1.206E+02	4.026E+02	0.063E+02	1.57
	Total Acti	lvity:	2.267E+03	3.629E+03		

Grand Total Activity : 2.267E+03 3.629E+03

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 1135L120319

Page: 3 Acquisition date : 3-DEC-2019 18:03:23

Bkqnd FWHM Channel Left Pw Cts/Sec %Err Ιt Energy Area %Eff Flags 0 75,04 61 15930 1.23 149.12 147 6 1.41E-03 **** 2.30E+00 0 136.54 2384 13793 1.56 272.23 268 8 5.52E-02 17.6 2.25E+00 509.68 506 9 2.38E-02 34.4 0 255.18 1030 9324 1.66 1.63E+00 3039 1.73 0 814.14 464 1628.27 1622 12 1.07E-02 48.5 6.88E-01 2 1325.28 508 896 2.75 2650.95 2646 31 1.17E-02 23.5 4.81E-01 999 1.89 2922.36 2915 16 1.35E-03 **** 1460.95 58 4.47E-01

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 18 Number of unidentified lines 6 Number of lines tentatively identified by NID 12

66.67%

Nuclide Type :

			Wtd Mean	Wtd Mean		
						2-Sigma
Nuclide	Hlife	Decay	BQ/TOTAL	BQ/TOTAL	2-Sigma Error	%Error Flags
03-PB210		1.02	7.535E+02	7.655E+02	0.220E+02	2.87
04-CD109	462.90D	1.32	7.582E+02	1.001E+03	0.025E+03	2.52
05-CO57	270.90D	1.61	2.490E+01	4.002E+01	0.118E+01	2.95
06-CE139	137,66D	2.54	1.968E+01	5,009E+01	0.194E+01	3.88
07-HG203	46.61D	15.8	9.633E+00	1.520E+02	0.120E+02	7.89
08-SN113	115.10D	3.06	6.405E+01	1.958E+02	0.043E+02	2.20
09-SR85	64.84D	7.26	3.277E+01	2.381E+02	0.074E+02	3.11
10-CS137	30.17Y	1.01	1.732E+02	1.752E+02	0.020E+13	1.12
11-Y88	106.65D	3.34	1.219E+02	4.069E+02	0.063E+Q2	1.55
12-CO60	5.27Y	1.07	1.901E+02	2.032E+02	0.016E+Ô2	0.77
1.4-Y88	106.65D	3.34	1.206E+02	4.026E+02	0.0635+02	1.57
				and also year and then some from them tree		
	Total Acti	vitv:	2.268E+03	3.630E+03		

Total Activity: 2.268E+03

Grand Total Activity: 2.268E+03 3.630E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

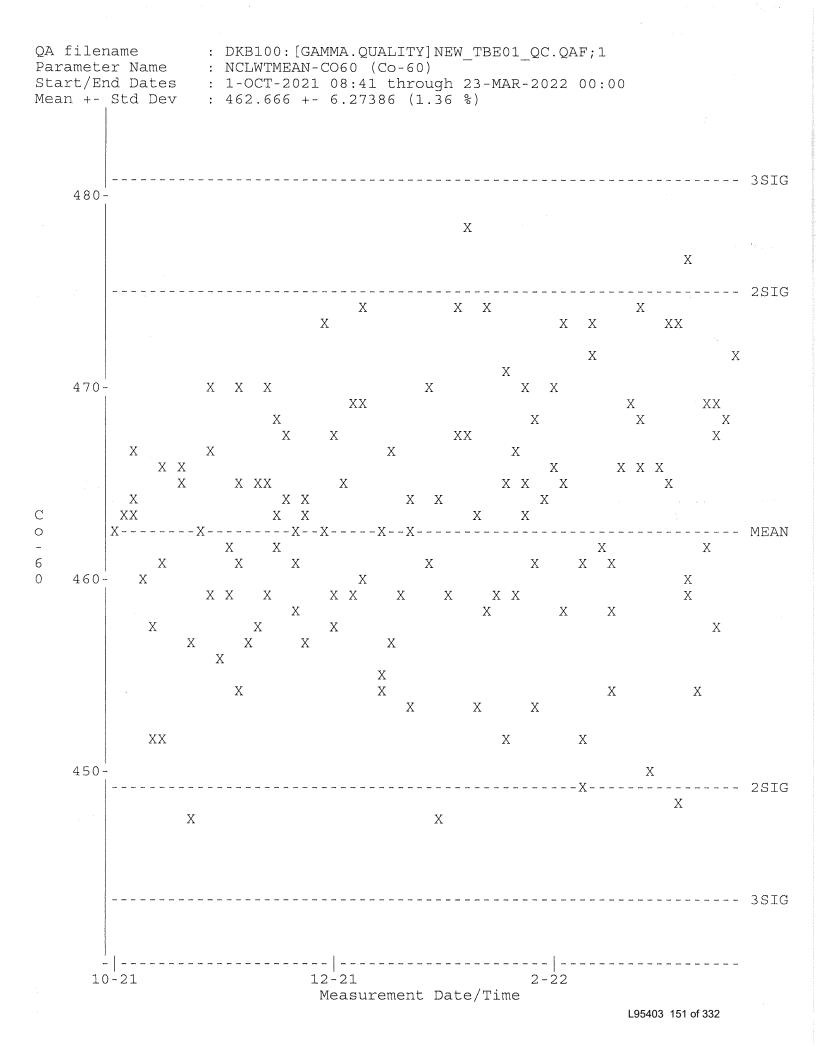
and the second section of the section of the second section of the section of the second section of the section of	Activity	Act error	MDA	MDA error	Act/MDA
Nuclide	(BQ/TOTAL)		(BQ/TOTAL)	i de la companya de l	
03-PB210	7.655E+02	2.196E+01	1.954E+01	0.000E+00	39.183
04-CD109	1.001E+03	2.527E+01	2.310E+01	0.000E+00	43.332
05-CO57	4.002E+01	1.180E+00	1.105E+00	0,000E+00	36.208

L95403 145 of 332

				·	,
06-CE139	5.009E+01	1.942E+00	1.895E+00	().000E+00	26.438
07-HG203	1.520E+02	1.199E+01	1.279E+01	0.000E+00	11.879
08-SN113	1.958E+02	4.310E+00	3.265E+00	0.000E+00	59,960
09-SR85	2.381E+02	7.394E+00	6.020E+00	0.000E+00	39.550
10-CS137	1.752E+02	1.965E+00	1.015E+00	0.000E+00	172.707
11-Y88	4.069E+02	6.288E+00	3.608E+00	0,000E+00	112.764
12-CO60	2.032E+02	1.570E+00	7.111E-01	0.000E+00	285.814
14-Y88	4.026E+02	6.308E+00	1.591E+00	0.000E+00	253.009
			•		
Non-Id	entified Nuclides				
	Key-Line				
	Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(BQ/TOTAL) Ided		(BQ/TOTAL)		
01-CO57	1.806E+03	7.032E+01	1.295E+02	0.000E+00	13.951
02-CE139	9.777E+00	9.876E+00	1.669E+01	0.000E+00	0.586

```
A, 1135L120319
                    ,12/04/2019 10:00,06/01/2019 12:00,
                                                           1.000E+00,3.5L 5ML MIXED
                    , CALIBRATION PB
B, 1135L120319
                                           ,12/04/2019 09:55,1135L120319
C, 03-PB210, YES,
                    7.655E+02,
                                  2.196E+01,
                                                1.954E+01,,
                                                                39.183
C,04-CD109,YES,
                    1.001E+03,
                                  2.527E+01,
                                                2.310E+01,,
                                                                43.332
C,05-CO57 ,YES,
                    4.002E+01,
                                  1.180E+00,
                                                1.105E+00,,
                                                                36.208
C,06-CE139,YES,
                    5.009E+01,
                                  1.942E+00,
                                                1.895E+00,,
                                                                26.438
C, 07-HG203, YES,
                   -1.520E+02,-
                                  1.199E+01;
                                              ---1-279E+01-,
                                                               11.879
C, 08-SN113, YES,
                    1.958E+02,
                                  4.310E+00,
                                                3.265E+00,,
                                                                59.960
C,09-SR85 ,YES,
                    2.381E+02,
                                  7.394E+00,
                                                6.020E+00,,
                                                                39.550
C, 10-CS137, YES,
                    1.752E+02,
                                  1.965E+00,
                                                1.015E+00,,
                                                               172.707
          , YES.
C, 11-Y88
                    4.069E+02,
                                  6.288E+00,
                                                 3.608E+00,,
                                                               112.764
C,12-CO60 ,YES,
                    2.032E+02,
                                  1.570E+00,
                                                7.111E-01,,
                                                               285.814
C,14-Y88 ,YES,
C,01-C057 ,NO ,
                                                1.591E+00,,
                    4.026E+02,
                                  6.308E+00,
                                                               253.009
                    1.806E+03,
                                  7.032E+01,
                                                1.295E+02,,
                                                                13.951
C,02-CE139,NO,
                    9.777E+00,
                                  9.876E+00,
                                                1.669E+01,,
                                                                 0.586
```

GAMMA SPECTROSCOPY


Daily Source and Background Checks

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE01_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
                                             Χ
                                              Χ
            Χ
                                              Χ
            XX
C
         XXX X
                                               Χ
е
               Χ
                                            Χ
                                           Χ
n
t
        Χ
               Χ
                                           Χ
                            Χ
r
                                        XX X
0
   2665-
               XX
                                                Χ
i
                XX
                           XX
                                        Χ
                                                Χ
d
                  Χ
                            XX
                                  Χ
                                    X
                                                                           Χ
                  Χ
                            Χ
                                  Χ
                                                 Χ
                                                                      XX XX X
1
                  XXX
                             Χ
                                   X XX
                                                                       XXXX
3
                                   Χ
                    Χ
                                                 Χ
                                                                  XX
                                                                      Χ
3
                     Χ
                                                  Χ
                                                                    X
                     Χ
                               Χ
                                                                  X XX
                                 X
                                                    Χ
                                                                     Χ
                     Χ
                                Χ
                                                   XX
                                                                  Χ
                                Χ
                                                     Χ
                                                     XX
                                                                          Χ
                                                      Χ
                                                           X XX
                       XXX
                                                       X \quad X \quad X \quad X
                       Χ
                                                        X \quad X \quad XX
                                                        XX
                                                               Χ
                          XX
                                                             Χ
      10-21
                              12-21
                                                      2-22
                               Measurement Date/Time
```

L95403 149 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE01_QC.QAF;1
Parameter Name : PSFWHM-1332 (FWHM-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 1.70000 through 2.50000
    2.4-
                         Χ
    2.2-
                                                Χ
                                                                       X X
                                 X XX
                                                Χ
                                                                       X \quad X \quad X
                       X X
                 Χ
                                                          Χ
                                                                       XX X
                                               X
                  X \qquad X \quad X \quad X
                                 Χ
                                                                X \quad XXX \quad X \quad X
          F
                                                                   X X
W
                                                                    X
Η
            ХХ
             X \quad X \quad X \quad X \quad X \quad X
                                                          X XX X
1
                                           X X
3
         Χ
             Χ
                               Χ
                                         Χ
3
      2 -
    1.8-
                               12-21
      10-21
                                                        2-22
                               Measurement Date/Time
```

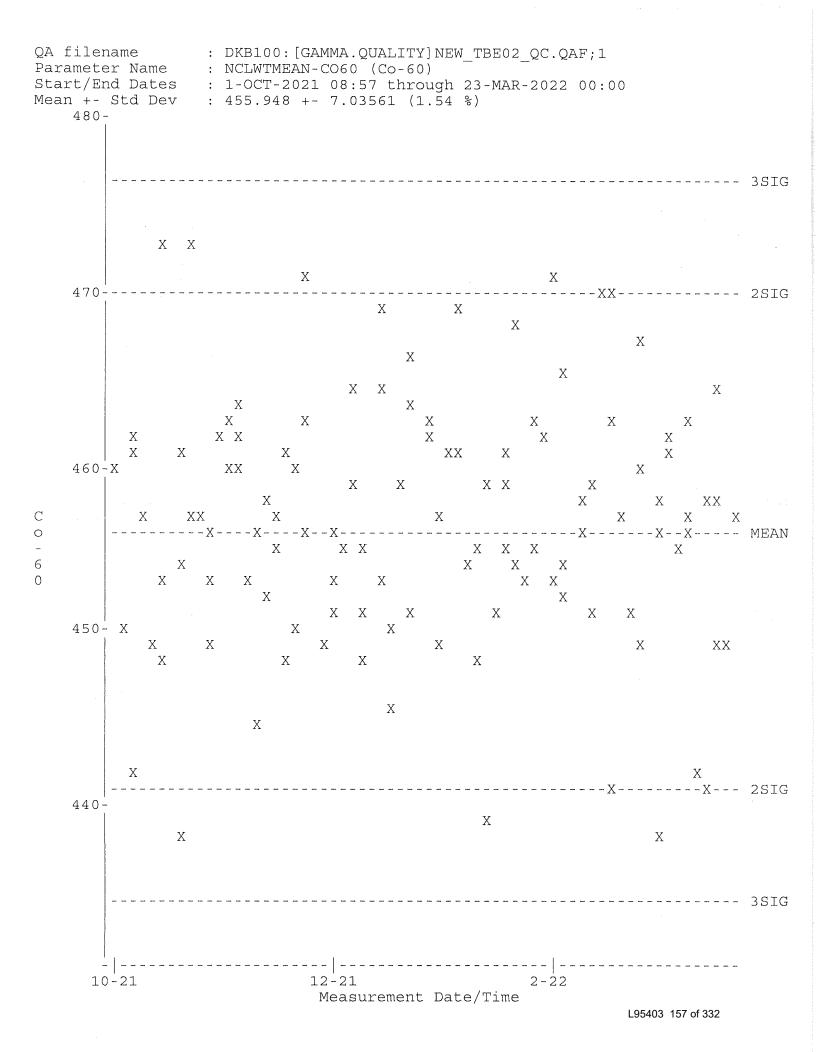
L95403 150 of 332


```
QA filename : DKB100:[GAMMA.QUALITY]TBE01_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 1.50000 through 3.50000
    3.5-
       3 -
В
а
С
k
g
r
    2.5-
0
                                     Χ
u
n
                               Χ
d
R
а
                                       XX
t
                 Χ
                           Χ
                                            X
                                                         X
                                                              Х Х
                           Χ
                                   X X
е
                     \mathsf{X} \; \mathsf{X}
                                                           X
         XXX X
                                                           X XX XX
         Х Х
                    X X XX
                                                         XX XX XX XX
           X \quad X \quad X \quad X \quad X \quad X
                            X
                                                XXX XXXXX XX X X X XX XX
                 XX
                                       ХХ
              Χ
                                X
       2 -
            X X
                        Χ
                                                 Χ
                                                            XX
                     X X
                             X
                                                    X X
                                                                    Χ
                                                                           Χ
                                                          X
                                                                                    Χ
                                Χ
                                                       Χ
                                  12-21
       10-21
                                                              2-22
                                   Measurement Date/Time
```

L95403 152 of 332

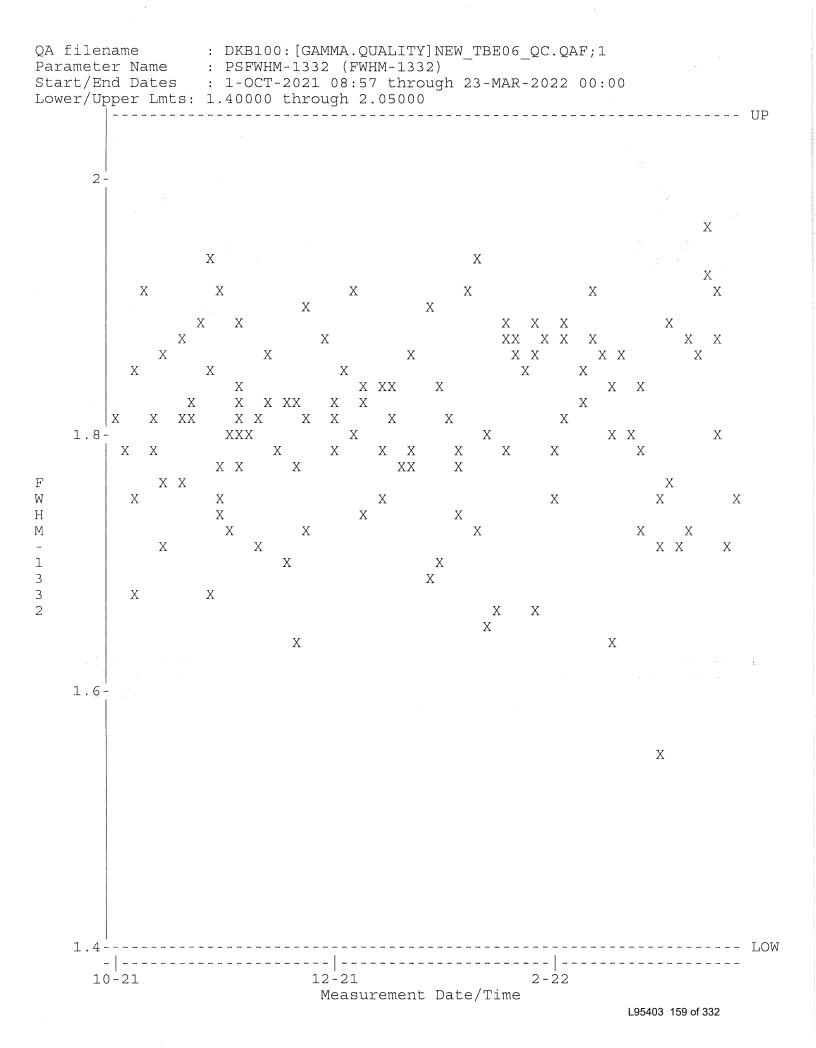
```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE01_QC.QAF;1
Parameter Name : PSCENTRD-59 (Centroid-59)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 118.500 through 120.500
   120.5-
     120-
                                                             Χ
\mathsf{C}
                  Χ
                                                         XXX X
           X XXXXXX
                                    Χ
                                             X \quad X \quad X \quad X \quad X
                                                                                                  Χ
            X XX X X XXX X X XXX
n
                                                               X
                                                                                          X \quad X \quad XX
            \mathsf{X}                                                                                        X XXXX X
                                                                               XX
                                X XX X XX
                                                                 X XX X
  119.5-
\Upsilon
                        X X
                                                                                     X XX XX
                                X XX
0
                                                                    X XX X XXXXX X
i
                              XXXX X X
                                                                           XX X
đ
                                  Χ
                                           Χ
5
9
     119-
        10-21
                                         Measurement Date/Time
                                                                                       L95403 153 of 332
```

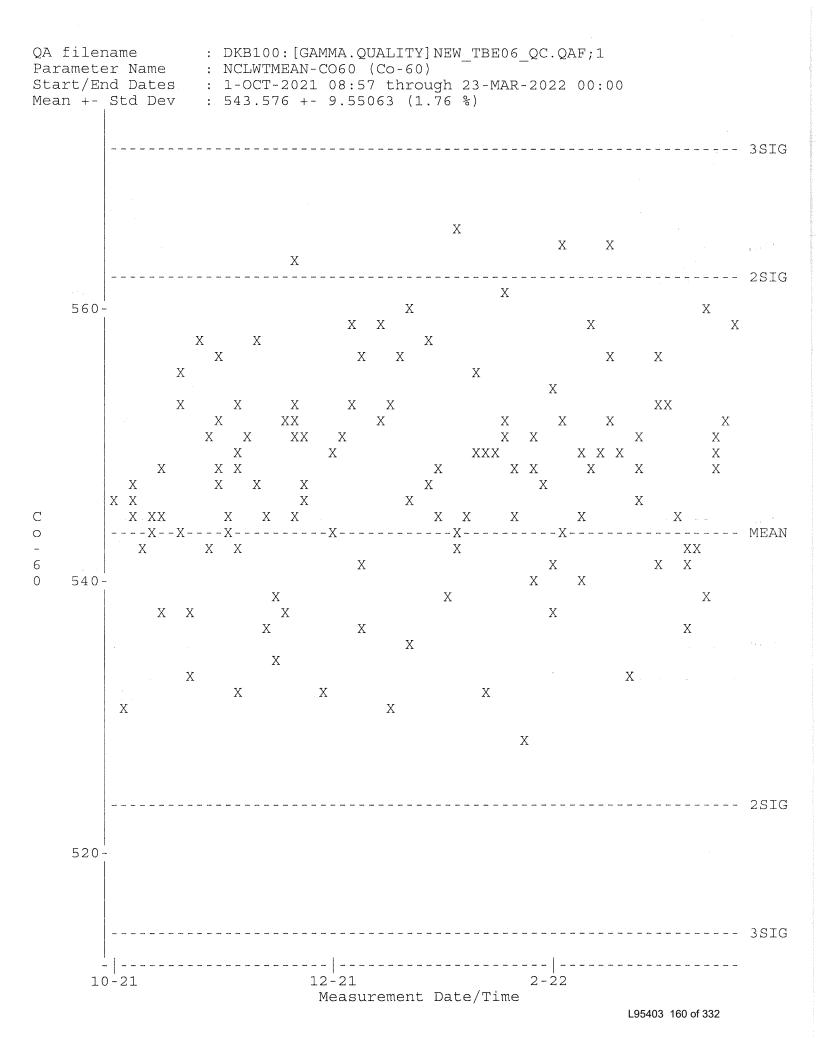
```
QA filename : DKB100:[GAMMA.QUALITY]TBE02_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 3.50000
       3 -
                                       X X
                X
                Χ
                          Χ
                                                                     Χ
                                                                                       Χ
               Χ
                      XX \quad X \quad X
                                             Χ
                                                                    X X
                                                                                   Χ
                Χ
                         X XX
                                   X X
                                                 Χ
                                                                          X
                                                                               ХХ
                                                                                            X
В
                                             Χ
             Χ
                     Χ
                              X
                                   Χ
                                                                           Χ
                                         X X
         ХХ
                              ХХ
а
                          Χ
                                                    X \quad X \quad X \quad X \quad X \quad X
                                                                                    X XX
                                       X X
                            X XXX
                                                   X X
C
       2 - X
                                                                     ХХ
                                                                    X \quad X \quad X \quad X \quad X
k
                  XX
                                 Χ
                                     XX XX
                                                   X XX
                         X
                                              X X X XX
g
                      Х Х
                                      Χ
                                                                    X \qquad X \qquad X
           X X
                  Χ
                                  Χ
                                              XX X
                                                                         X
r
                                                             XXX
0
            Χ
                                                 Χ
                                                         X
                                                                                           Χ
u
                                                         Χ
                                                               X
                                                                            X
                                                       Χ
n
d
R
а
t
е
       1-
       10-21
                                    12-21
                                                                 2-22
                                     Measurement Date/Time
```


L95403 154 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE02_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
              Χ
          XX X X
         X XX XXXX X
                     XXXX
                          XX
                           XX X
                              XXXX
                                XX X
                                       Χ
                                     XX
                                         X XXXX XX
                                           XX \quad X \quad XX
                                                 XX X
                                                        Χ
                                                          XXXXX
C
                                                                XX
                                                                  X X
е
n
                                                                     X X
t
                                                                      XXXX X XXXX X
\mathbf{r}
                                                                        X XX X XXX XX
   2665-
0
                                                                            Χ
                                                                                     Χ
i
d
                                                                      Χ
1
                                                                                     Χ
3
       _ | ----- | ------ | ------
                                   12-21
       10-21
                                                               2-22
                                   Measurement Date/Time
```

L95403 155 of 332

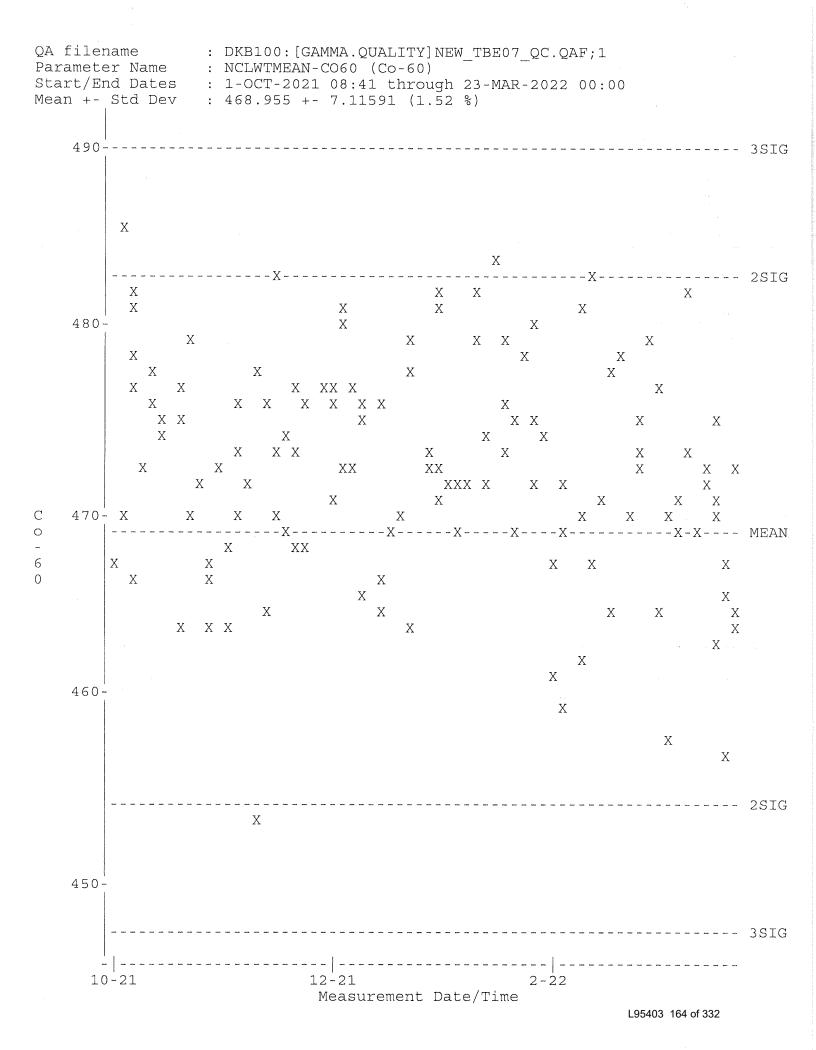

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE02_QC.QAF;1
Parameter Name : PSFWHM-1332 (FWHM-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 1.50000 through 2.40000
    2.4-
    2.2-
                    Χ
                                        Χ
                                                         Χ
                         Χ
                                                   Χ
                                                      ХХ
              Χ
                          Χ
                                Χ
                                                                   Χ
                          Χ
          Χ
                              Χ
                                                   Χ
                                                                       Χ
                                                                 Χ
           Χ
                                                            Χ
              X X
                     X
                              X X
                                      X \quad X \quad X \quad X
                                                           Χ
                                                                       Χ
                                                              Χ
                    ХХ
                  X
                                        X XX X
               ХХ
                                   X \quad XX
                                              Χ
                                                    X \quad X \quad X \quad X
                                                                     XX
      2 -
                                                              X \quad X \quad X
F
            ХХ
                                          XX
                                             X
                    XX X X
                                      Χ
                                             Χ
                                                     X X
W
        Χ
                                                             Χ
                                                                        Χ
                                                   X
Н
         X \quad XX \quad X
                   X X
                                                 Χ
                                                                Χ
M
                          XX
                                                   Χ
                                                                X X
            Χ
                XX
                                               Χ
                                                            Χ
1
                                    Χ
3
                    Χ
3
         Χ
                    X
                                   Χ
                                         Χ
                                                     Χ
                                                               Χ
                                    Χ
                           Χ
                                                                 Χ
                                                                     Χ
    1.8-
       X
    1.6-
       12-21
                                                    2-22
      10-21
                             Measurement Date/Time
```


L95403 156 of 332

QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE06_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00 Lower/Upper Lmts: 2659.00 through 2670.00 CX X XXе $X \quad X \quad XX$ n t. 2665-Χ Χ r0 Χ i d XXXXΧ 1 Χ 3 XXXΧ 3 Χ Χ Χ Χ X X Χ XXX Χ XXXX X Χ XXХ Х Χ X XX Χ ХХ XXXXXX X Χ $X \quad X \quad X$ Χ ХХ Χ $X \quad X \quad X \quad X$ Χ X XX Χ X XXX X XXΧ Χ Χ Χ XX X XXXX2660-XX X X XXΧ 12-21 2-22 10-21 Measurement Date/Time

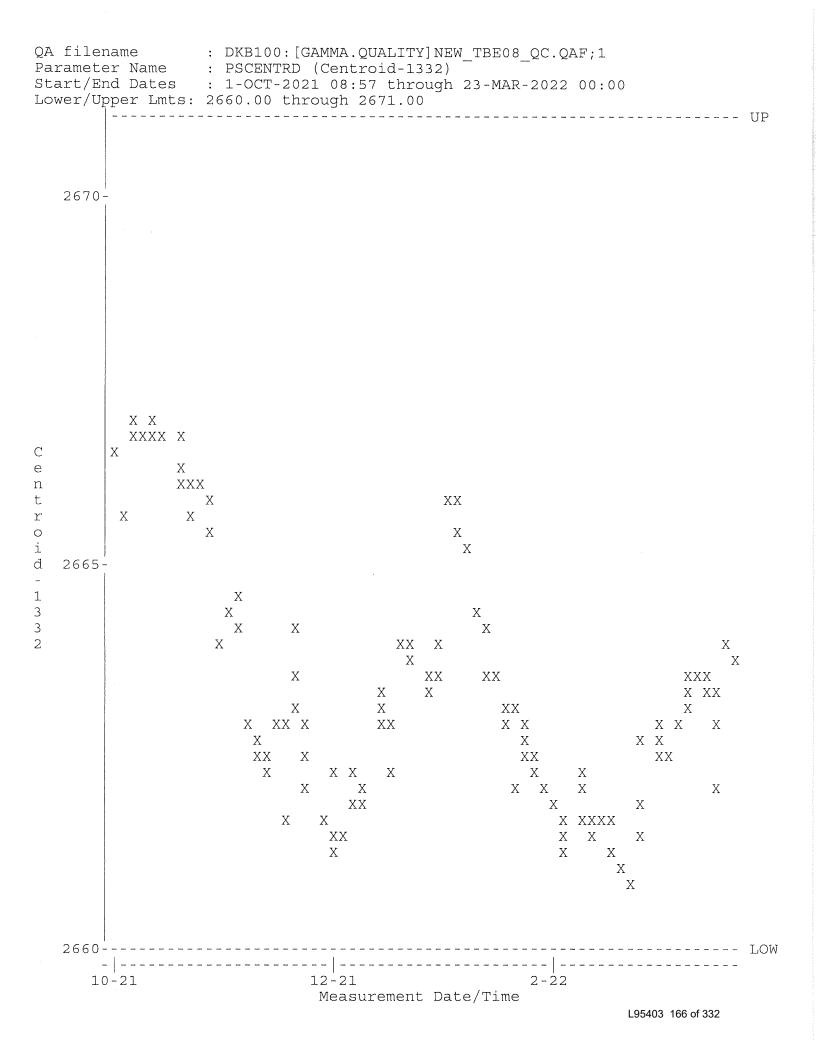
L95403 158 of 332

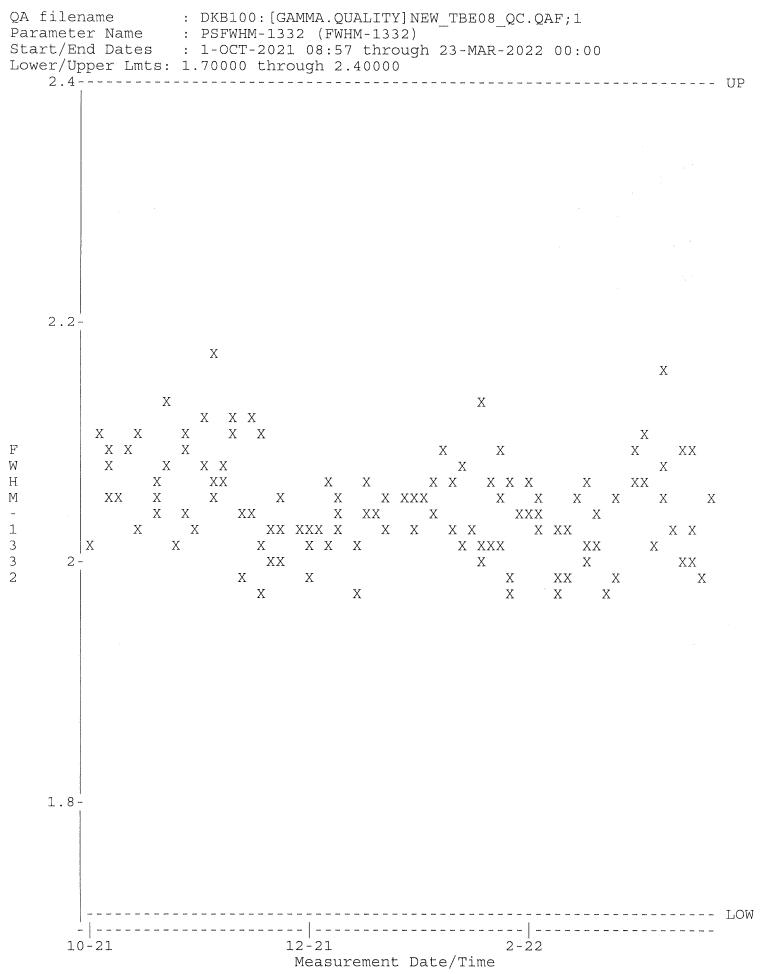

```
QA filename : DKB100:[GAMMA.QUALITY]TBE06_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 3.50000
     3 -
                                                                Χ
             X X
                                                            X
       В
         ХХ
а
      X
                 X
                               X \quad X \qquad \qquad X
                                                    X
     2 -
                                                Χ
C
k
g
r
0
u
n
R
а
t
     1 -
     10-21
                         12-21
                                              2-22
                          Measurement Date/Time
```

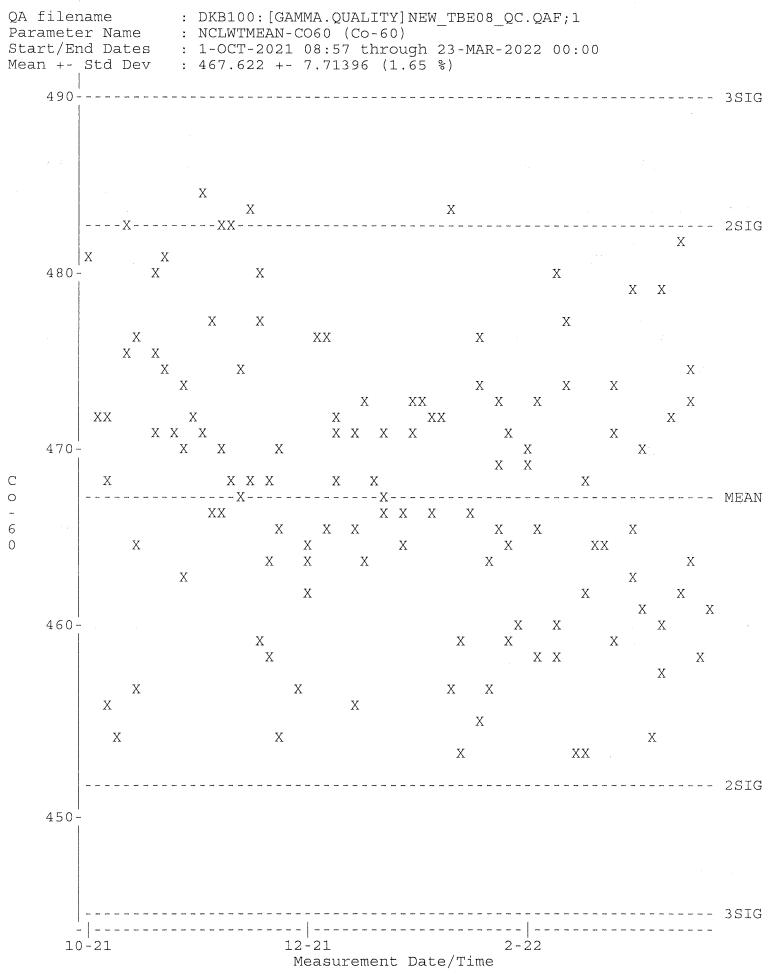

L95403 161 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE07_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
               Χ
             XXXX X
          X \quad X \quad X
                   XX X
           Χ
                     XXXX
                     X XX
                           Χ
                              X XX
                             XX - XXX
                               X \quad X \quad X
                                ХХ
                                       Χ
                                        Χ
                                                         Χ
C
                                        XXX
                                                         Χ
е
                                        XX
                                            X \quad XX \quad X \quad X
n
                                            X \quad XX \quad X \quad X \quad XXXX
t
                                                           X XX
\mathbf{r}
                                                      Χ
0
    2665-
                                               X \quad X \quad X
                                                               XXXX
i
                                                                    XXX
d
                                                   Χ
                                                                       Χ
                                                     Χ
                                                                           X XX XXX
1
                                                                           XX \quad XX \quad X \quad X
3
                                                                           XX \quad X \quad X \quad X \quad X
3
                                                                                 X X
                                                                                              XX
                                                                                   Χ
                                                                                              XX
                                                                                   Χ
                                                                                             Χ
                                                                                            XX
        10-21
                                     12-21
                                                                    2-22
                                      Measurement Date/Time
```

L95403 162 of 332


```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE07_QC.QAF;1
Parameter Name : PSFWHM-1332 (FWHM-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2.00000 through 3.50000
                                                                      Χ
                                                                      Χ
      3 -
                                                                     XXX
                                                                     Χ
                                                                    Χ
                                                                     XX
F
        W
                                                                   Χ
Η
Μ
         1
                                               X
                                                     X
                                                               X
3
                                                               XX
3
        Χ
                      Χ
                              Х
                                       Х
                                                            Χ
                                                               X
2
       Χ
               Χ
                    Χ
    2.5-
     10-21
                            12-21
                                                  2-22
                            Measurement Date/Time
```

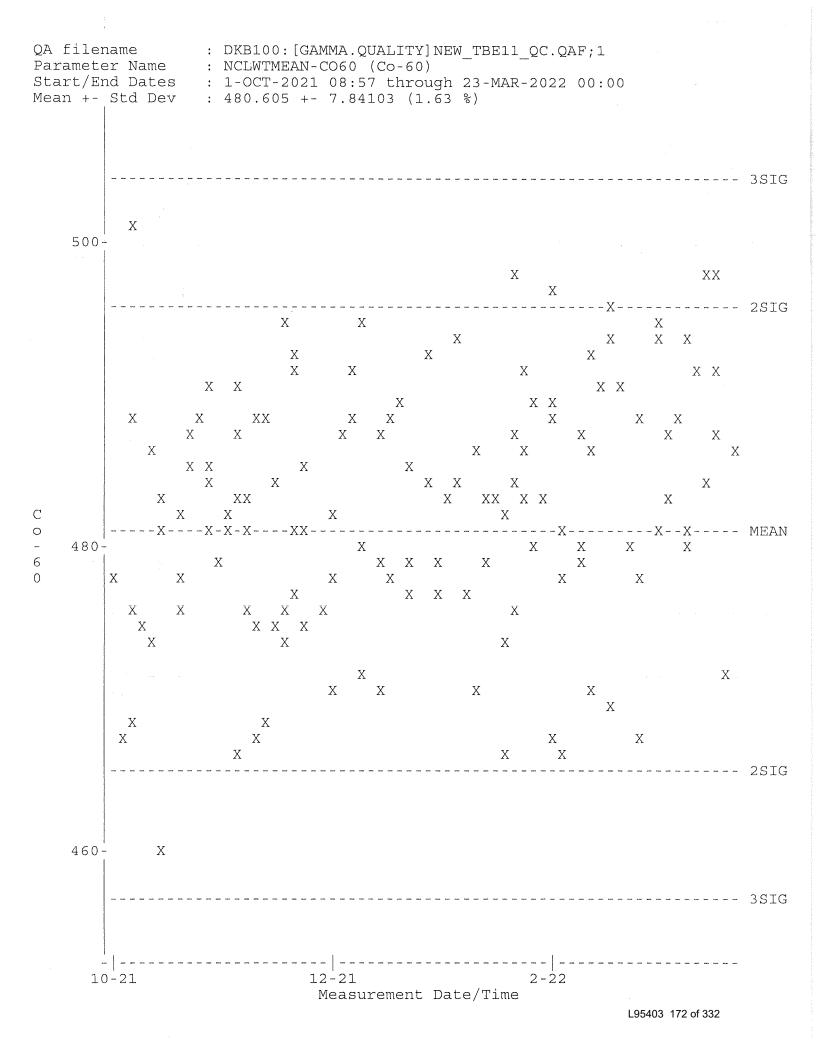

L95403 163 of 332




```
QA filename : DKB100:[GAMMA.QUALITY]TBE07_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 3.50000
    3 -
                                               Χ
            Χ
                                              Χ
                                   X X
      В
                           Χ
а
    2 -
С
k
g
r
0
u
n
R
а
t
е
    1 -
    12-21
    10-21
                                  2-22
                   Measurement Date/Time
```

L95403 165 of 332


```
QA filename : DKB100:[GAMMA.QUALITY]TBE08_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 3.50000
       3 -
                                        Χ
           В
         XXX X XX X
          X
                         X \quad XX \quad X \quad X \quad XXX \quad X \quad XX
                                                                               X XXX
а
C
       2 ~
                                                                           Χ
k
g
r
0
u
\Pi
d
R
а
t
е
       1 -
                                   12-21
                                                                2-22
       10-21
                                    Measurement Date/Time
```


L95403 169 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE11_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
            Χ
            Χ
C
           X X
е
             XXX
            X X
n
t
                   Χ
r
                   Χ
   2665-
                   XXX
0
i
d
                       Χ
                                                                                           Χ
                       XX
                                                                                      X X X
1
                         XX
                                                                                     XXXX
3
                                                                                   Χ
                          Χ
                                                                                          Χ
3
                          Χ
                                                                                    X
                                                         Χ
                                                                                Χ
                            Χ
                                                       XX
                                                                                Χ
                                                                                          Χ
                             Χ
                                                        Χ
                             XX
                                                                          XXXXX
                               Χ
                                                                            Χ
                                  Χ
                                                     Χ
                                                                          Χ
                                XXX
                                               XX XX
                                                          Χ
                                   Χ
                                            X \quad X \quad X
                                   X X
                                                           Χ
                                          X X
                                                            XX
                                          XX XX
                                      XX \quad X \quad X
                                                              Χ
                                        Χ
                                                               XX
                                                                  Χ
                                                                  X
                                                               X XX
                                                                        Χ
                                                                  XX X
                                                                     XX
                                                ----X----- LOW
        _ | - - - - - - - | - - - - - - | - - - - - - - - - - | - - - - - - - - - - - - - |
       10-21
                                    12-21
                                                                  2-22
                                      Measurement Date/Time
```

L95403 170 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE11_QC.QAF;1
Parameter Name : PSFWHM-1332 (FWHM-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 1.50000 through 2.60000
     2.5-
                                                        X XX
                        X X
                               X
                                              Χ
                                                                               Χ
                                   X
                   X XX
                                                           XX
                            X
                                    X X
          Χ
                                                                    XX X
                  X
                                                               Х
                          XX X
                                      X
                                                           X
                                                   Χ
                         Χ
                   Χ
                                                           Χ
                                          Χ
                                        X
                         X \quad X \quad X
                                                   XX X XX X
                                                                     X \quad X \quad X \quad X \quad XXX
               ХХ
                                                          X \quad X \quad X
                                                                    X X X
                        XX
                                             X XXXX
               X \quad X \quad X
                                                                     X \quad X \quad X \quad X
                                     X X
                                     X \quad X \quad X
           X X
                    X
                           Χ
                                                                 Χ
            ХХ
                                     Χ
F
                    X X
                                            Χ
                                                             X X
                                                                          ХХ
                                                 Χ
                  Χ
W
                              X
                                      Χ
                                                 Χ
                                                                                  XX
Н
                          Χ
                                                             X
                                              Χ
                                                                        Χ
                                Χ
                                                              Χ
M
            Χ
                                           XX
                                                                                       Χ
                              Χ
                                      Χ
1
       2 -
                          XX \quad X \quad X
                                                                    Χ
3
3
            Χ
                                Χ
           X
                                   12-21
                                                              2-22
       10-21
                                    Measurement Date/Time
```

L95403 171 of 332

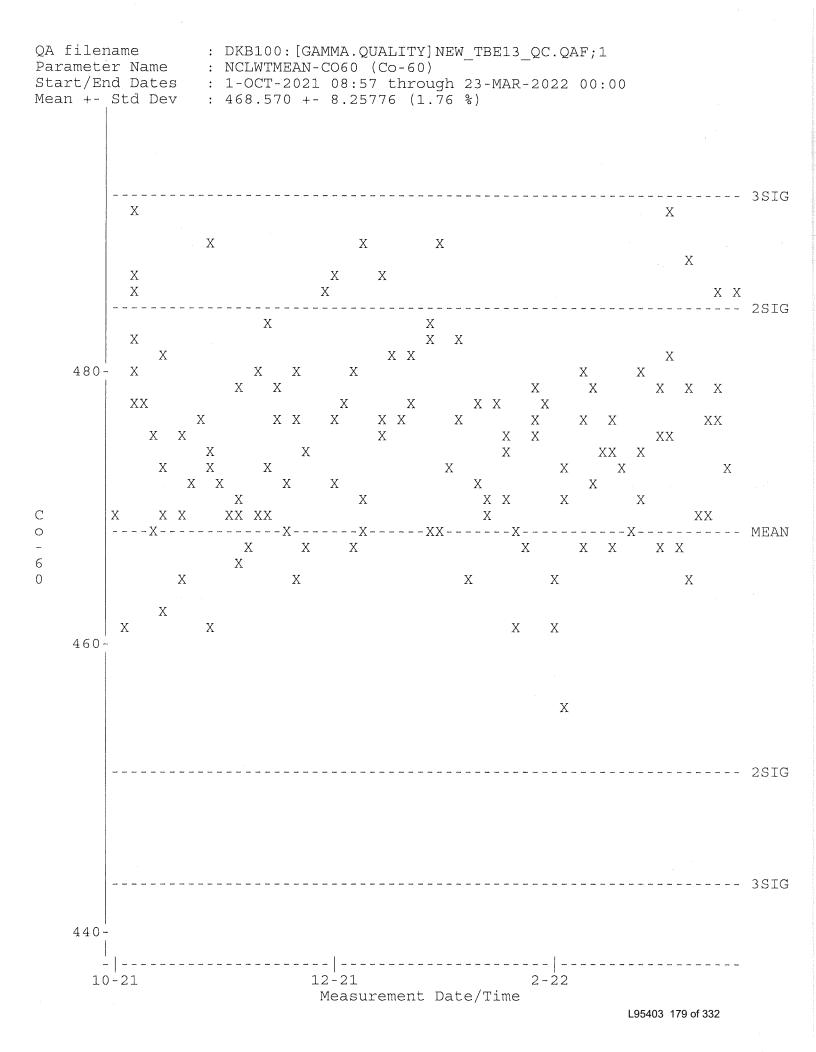

```
QA filename : DKB100:[GAMMA.QUALITY]TBE11_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 4.00000
                 Χ
                                    Χ
                                                          X
      3 -
                                      Χ
                                                         Χ
                         Χ
                                       Χ
                                                          ХХ
                                                                    Χ
                                                                           Χ
        Χ
                   Χ
                                 XX
                                         Χ
                                              Χ
                                                      XX
                                                             Χ
                   Χ
                                            Χ
                                 ХХ
                                                   X \quad XX \quad X
                                                             ХХ
                                                                  X
                        Х
                                              Χ
                                    ХХ
                                                   ХХ
                                                                   Χ
                 Χ
                        X XX
                                       ХХ
                                                     X \quad X \quad X
                                                              ХХ
                                                                     Χ
                                                                          Χ
                                           XX X
                                 X X
          X \quad X \quad X
                      XX X
                                                                XX
В
         X \quad XX \quad X \quad X \quad XX
                                           X \quad XX \quad XX \qquad X
                         XX
                                      Χ
                                                                     XXX XXX
               XX X X
а
                         XXX
                                  X
                                                                      ХХ
                                                                  Χ
С
                                        Χ
                                Χ
                                                    Χ
                                                             ХХ
                                                                       Χ
k
                                         Χ
                                                    Χ
g
r
0
      2 -
u
\mathbf{n}
d
R
а
t
е
      1 -
                               12-21
      10-21
                                                       2-22
                                Measurement Date/Time
```

L95403 173 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE11_QC.QAF;1
Parameter Name : PSCENTRD-59 (Centroid-59)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 117.000 through 121.000
    121-
    120-
C
е
n
    119-
r
0
i
5
9
    118-XXXXXX XX X
             X XXXXX X
               X X XXX
                                                                      X
                                                            XX X X XX XXX
                     X XXXXXXX
                                          XXXX
                           XXX XX XX X XX X X X
                                                           X X XX X XXX
                                XX XX X XX XX XX XX
                                                    XXXXXX X
                                                        X XX
      12-21
                                                      2-22
      10-21
                               Measurement Date/Time
                                                                 L95403 174 of 332
```

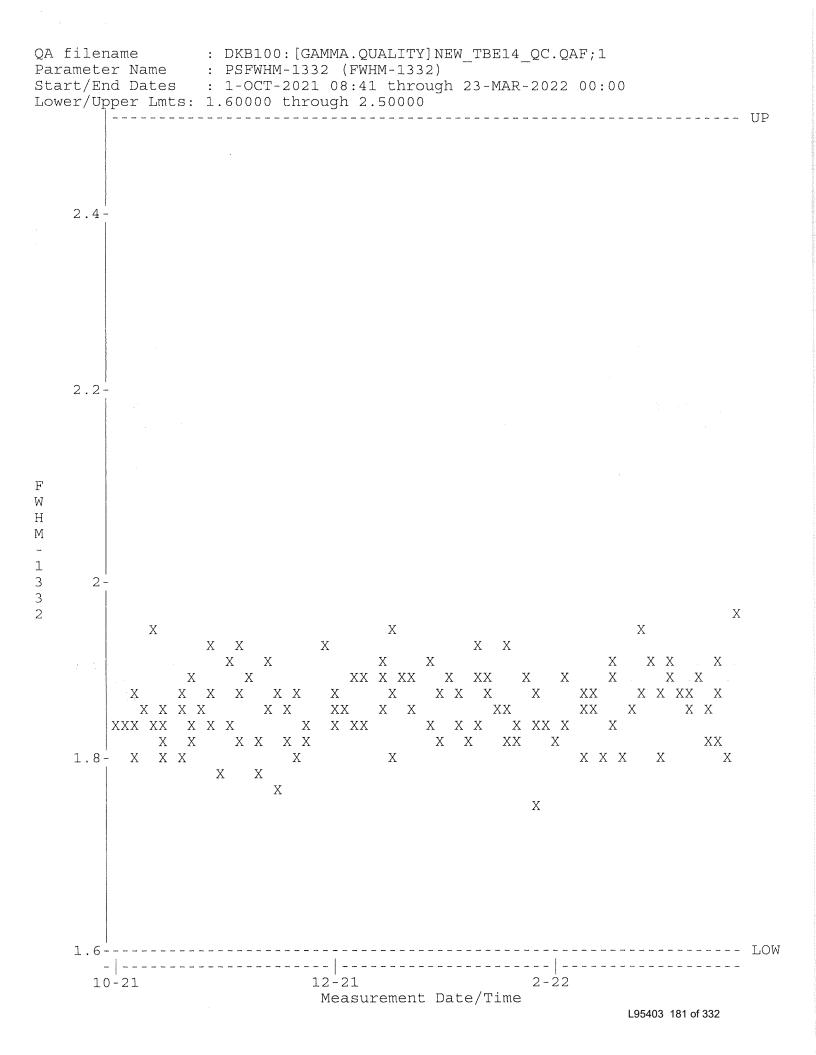
```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE13_QC.QAF;1
Parameter Name : PSCENTRD-59 (Centroid-59)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 118.500 through 120.500
  120.5-
                  120-
                                Χ
                         X XX
C
                         X
                              X X
                                        Χ
е
                       X XX
                                 Χ
                                                          Χ
                                        Χ
                                                                                 Χ
                                                                                          Χ
                       X \quad X \quad X \quad X
                                                          X X
n
                       XX
                             X \quad X \quad XX
t
                                           Χ
                                                         Χ
  119.5-
                                   XX
                                                  Χ
                                                        Χ
                                                                     X X
0
                   Χ
                                              Χ
                                                                                    Χ
                                                                      Χ
i
                                      Χ
                                           X \quad X \quad X
                                                           XX \quad X \quad X
d
                   Χ
                                                            X \quad X \quad X \quad X
                                               ХХ
               Χ
                                    Χ
                                           ХХ
                                                       Χ
                                                               XXX
                                                                         Χ
                                                                                    XX
5
               XX
                   ХХ
                                          Χ
                                                                    Χ
9
                                                    Χ
                                                              Χ
                                                                   Χ
                                                                                      Χ
            X X
                                                                                 X \quad X \quad X
            XX X
                                               Χ
                                                    Χ
                                                                         Χ
                                                                                     Χ
                                                                                            Χ
           XX X
                     Χ
                                          Χ
                                                  Χ
                                                                       Χ
                                                                       Χ
                                                    Χ
                                                                                        Χ
          Χ
                    Χ
                                                      Χ
                                                                                        Χ
                                                                                 Χ
     119-
                                                                            Χ
                                                                             Χ
                                                                             Χ
                                                                            XX X
                                                                           XX
                                                                                             Χ
                                                                                              X
                                                                                         Χ
                                                                                           Χ
                                                                                          Χ
       10-21
                                     12-21
                                                                   2-22
                                      Measurement Date/Time
                                                                                L95403 175 of 332
```

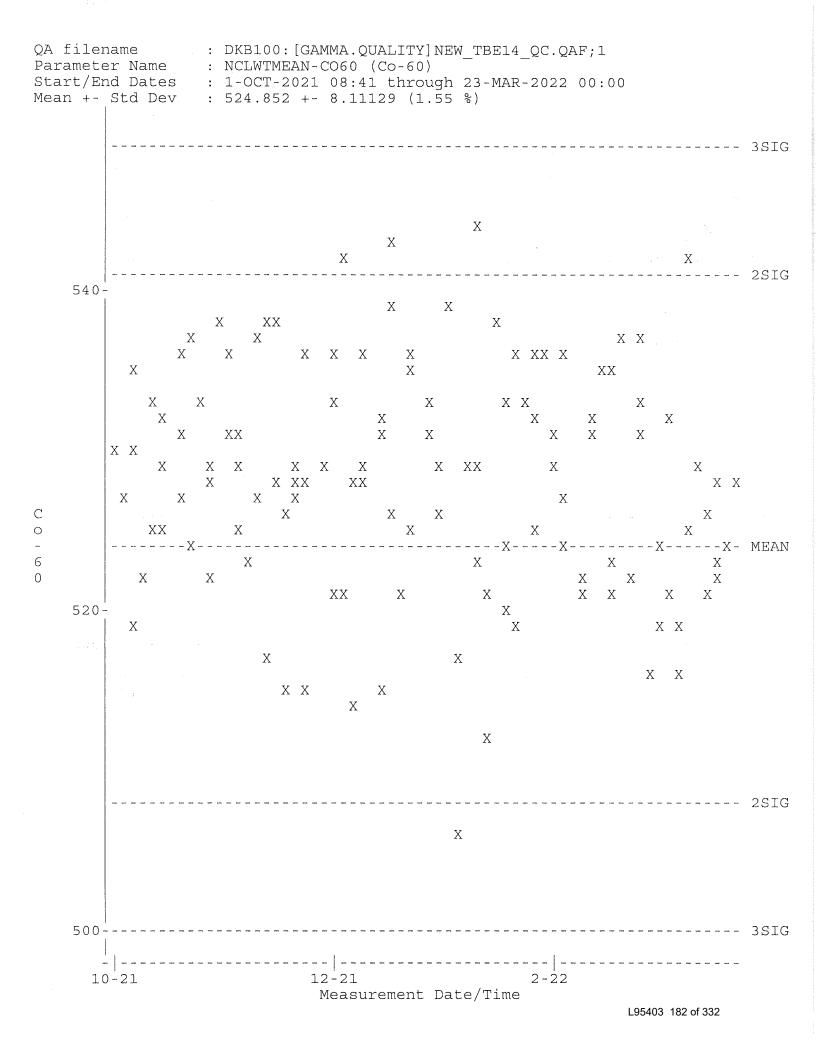
```
QA filename : DKB100:[GAMMA.QUALITY]TBE13_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 1.00000 through 4.00000
     3 --
В
а
C
k
g
r
\circ
u
n
d
R
а
t
                                                   X
е
     2 -
                                                 X X
               Χ
                             X \qquad X \quad X
      XX
                                                  Χ
                                                         Χ
                                      X
                         12-21
     10-21
                                              2-22
                          Measurement Date/Time
```


L95403 176 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE13_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
              XX X X X
C
          XXXXX X XXX X X
         X \quad X \quad X \quad X \quad XXX
е
                   Χ
n
t
r
   2665-
0
i
d
1
3
3
                             Χ
                              XX X
                                XX
                                  X
                                      X
                                     X XX
                                     X X
                                                    ХХ
                                         X \quad X \quad XX \qquad X \quad XXX
                                    Χ
                                            XX \quad X \quad XX \qquad XX
                                                  XX
                                                           XXXX
                                                                            X X
                                                                           X XXXX
                                                                 Χ
                                                                X X
                                                                              XX
                                                                   X X X XX
                                                                   X XXXX X
                                                                                      X
                                                                                     XXXX
                                                                       Χ
                                                                                         Χ
       _ | ----- | ------ | ------
       10-21
                                   12-21
                                                                2-22
                                    Measurement Date/Time
```

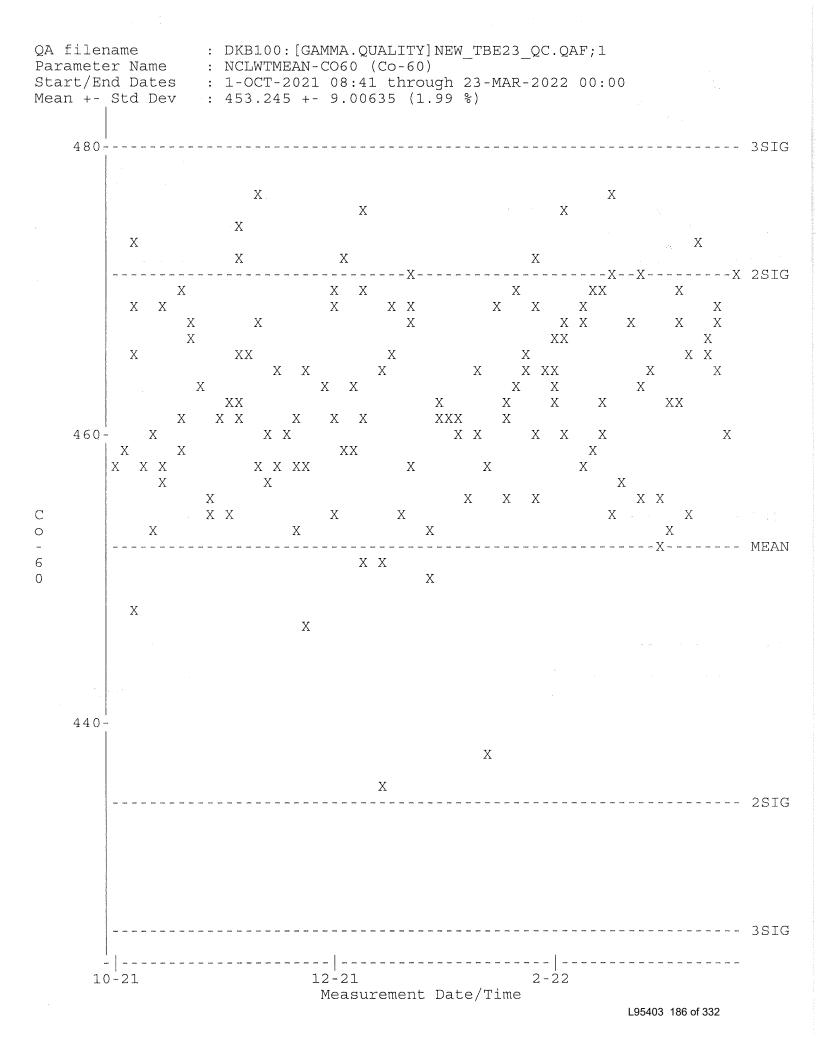
L95403 177 of 332


QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE13_QC.QAF;1
Parameter Name : PSFWHM-1332 (FWHM-1332)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00 Lower/Upper Lmts: 1.60000 through 2.00000 X Χ ХХ X XX X Χ X X X $X \quad X \quad X$ Χ х х X Χ Χ Χ Χ Χ X X XX XX X X X X XX XX XX X Χ XX X X X $X \quad X \quad X$ $X \quad X \quad X$ Χ $X \quad X \quad X \quad X$ $X \quad X \qquad \qquad X \qquad \qquad X$ X X X XX Χ XXX $X \quad X \quad X$ X Χ $X \quad X \quad X$ X X 1.9-X XX X Χ X X X X Χ Χ Χ Χ X X Χ X X Χ Χ Χ Χ F W Η Μ 1.8-1 3 3 2 1.7-10-21 12-21 2-22 Measurement Date/Time


L95403 178 of 332


```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE14_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
               Χ
                Χ
                          XXX
                       Χ
                           ХХ
                 Χ
                               XX
             XX
                         XX
                                  X X
                   X XX
            Χ
                              XX
                                    XXXX
                                    Χ
                                       X
                                         Χ
                                             ХХ
                   Χ
                                               X \quad X \quad X \quad X
                                               X \quad X \quad X
                   Χ
                                                      Χ
                                                                 XX
                                            X X
                                              X X
                                                          Χ
                                                               X XX
                                                  Χ
                                                          X X
                                                             XX
                                                                         XXXX
                                                      XX
                                                             Χ
                                                                           XXX
\mathbb{C}
                                                                        X \quad X \quad X \quad X \quad X
                                                                                  е
                                                                                           X \quad XXX \quad X \quad XX
n
t
                                                                                                      X XX X
                                                                                                 Χ
\boldsymbol{\Upsilon}
0
    2665-
                                                                                     XXX
i
                                                                                          X \quad X \quad XX
d
                                                                                              Χ
                                                                                                         Χ
                                                                                          Χ
1
                                                                                                   Χ
3
3
                                                                                                          Χ
                                           12-21
                                                                              2-22
         10-21
                                            Measurement Date/Time
```

L95403 180 of 332


```
QA filename : DKB100:[GAMMA.QUALITY]TBE14_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 3.50000
     3 -
В
а
     2 -
C
k
                                                  Χ
g
                             ХХ
                                         X
                                               X
r
                             X \quad X \quad XX \qquad X \quad X
                                              X
0
                   Χ
                          Χ
           u
       \mathbf{n}
                                                            Χ
d
              Χ
                                                   Χ
                                                            Х
R
                       Χ
а
t
     1-
      12-21
                                             2-22
     10-21
                          Measurement Date/Time
                                                      L95403 183 of 332
```

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE23_QC.QAF;1
Parameter Name : PSCENTRD (Centroid-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 2660.00 through 2670.00
                                                 Χ
                                        Χ
                   Χ
                              Χ
                                 XX X XXX
                                            X X XXX X X
        C
      ХХ
                      X X
е
t
r
0
  2665-
i
d
1
3
3
    10-21
                     12-21
                                      2-22
                      Measurement Date/Time
```

L95403 184 of 332

```
QA filename : DKB100:[GAMMA.QUALITY]NEW_TBE23_QC.QAF;1
Parameter Name : PSFWHM-1332 (FWHM-1332)
Start/End Dates : 1-OCT-2021 08:41 through 23-MAR-2022 00:00
Lower/Upper Lmts: 1.50000 through 2.00000
      2 ~
    1.9-
                                           Χ
                                                Χ
                                                   Χ
                                                     Χ
                                                        Χ
                                                              Χ
    1.8-
                           Χ
                                                      Χ
                                                                  Χ
F
                                                         ХХ
W
                      X X
                                 Χ
                                                   X X
                                            Χ
                                                                         Χ
Н
                       Χ
                                     X
                                                                     X
                                              Χ
M
          Χ
                                            Χ
                            Χ
                                      Χ
                                                         X \quad X \quad X
             Χ
                                        X \quad X \quad X
                                                         Χ
                                                               Χ
1
        Χ
                      ХХ
                                     Χ
3
                   Х Х
           ХХ
                            Χ
                                Χ
                                                    Χ
                                                                Χ
                                                                          Χ
3
                          Χ
               Χ
                               X XX
                                                 Χ
                                                           ХХ
                                                                 XXX
2
    1.7-
             X X
                  X XX
                                   Χ
                                                              Χ
                                                                  Χ
                                                                           XX
                                                            ХХ
         Χ
                         X X
                                ХХ
                                                                     Χ
                Χ
                     Χ
                                Χ
                                   Χ
                                      XXX
                                              Χ
                                                             Χ
                                                                      Χ
                          X X
                                                  X XXX
                                                            Χ
                                                                  Χ
                  Χ
                                                       Χ
            Χ
                             Χ
                                   Χ
                                               Χ
                 Χ
                                        Χ
                                                   Χ
                                                                        X
                      Χ
                                                              Χ
                       Χ
                                Χ
                                                                    Χ
                                                                       Χ
                                                      Χ
                                                Χ
                                                        Χ
               Χ
    1.6-
                      Χ
                                                                         XX
                                                                     Χ
       12-21
      10-21
                                                      2-22
                               Measurement Date/Time
```

L95403 185 of 332


```
QA filename : DKB100:[GAMMA.QUALITY]TBE23_BKG_QC.QAF;1
Parameter Name : BACKRATE (Background Rate)
Start/End Dates : 1-OCT-2021 08:57 through 23-MAR-2022 00:00
Lower/Upper Lmts: 0.000000E+00 through 3.50000
      3 -
В
а
С
      2 -
                                       ХХ
k
          X X
                 X \quad X \quad X \quad X
                                                   X X
                                            X X XX X
                 X \quad XX \qquad \qquad X \quad X \quad XX \quad X
g
        r
           0
                                                         XX X X
u
n
R
а
t
е
      1 -
                             12-21
                                                     2-22
      10-21
                              Measurement Date/Time
```

L95403 187 of 332

GAMMA SPECTROSCOPY

Sample and QC Raw Data

Analyst: M

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:06:57.99
TBE01 33-TP20784A HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:09.25

LIMS No., Customer Name, Client ID: L95403-1 SS ANCHOR QEA

Sample ID : 01L95403-1 Smple Date: 13-FEB-2022 13:37:00.

Sample Type : SS Geometry : 01S25121819

Quantity : 2.14000E+01 g Dry BKGFILE : 01BG030422MT Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 17:14:38.71

End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 17:14:30.86

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	3	74.88*	211	1427	0.77	150.30	5.72E+00	3.39E-03	31.4	9.12E+00
2	3	77.11	575	1303	0.82	154.75	6.11E+00	9.27E-03	10.2	
3	1	87.32*	263	1190	1.12	175.15	7.65E+00	4.24E-03	24.0	9.79E-01
4	1.	92.81*	477	1876	1.62	186.13	8.29E+00	7.69E-03	19.4	7.74E+00
5	1	185.83*	398	1411	1.38	372.03	9.12E+00	6.41E-03	20.7	1.43E+00
6	4	238.61*	1904	774	1.13	477.52	7.80E+00	3.07E-02	3.8	1.93E+00
7	4	241.56	677	1146	1.86	483,41	7.73E+00	1.09E-02	11.7	
8	1	295.13*	737	834	1.24	590.49	6.64E+00	1.19E-02	8.7	1.00E+00
9	1	338.21	466	869	1.55	676.59	5.95E+00	7.51E-03	13.1	5.31E-01
10	1	351.90*	1167	1076	1.40	703.94	5.76E+00	1.88E-02	7.4	1.77E+00
1.1	1	510.80*	273	925	2.66	1021.56	4.18E+00	4.40E-03	35.4	1.53E+00
12	1	583.02*	577	534	1.46	1165.93	3.71E+00	9.30E-03	10.0	9.72E-01
13.	1	609.10*	828	613	1.47	1218.05	3.56E+00	1.33E-02	7.5	9.67E-01
14	1	910.89*	402	366	1.73	1821.39	2.42E+00	6.48E-03	12.4	7.36E-01
15	1	968.88*	275	180	1.92	1937.32	2.28E+00	4.43E-03	11.8	2.11E+00
16	1	1120.33*	185	215	1.98	2240.15	1.98E+00	2.97E-03	19.3	2.00E+00
17.	1	1460.59*	1097	257	2.27	2920.55	1.54E+00	1.77E-02	5.0	1.30E+00
18	1	1764.45*	157	67	2.89	3528.27	1.32E+00	2.53E-03	16.5	1.38E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

1.0.0 = = 0.0	-11				TT	D	0 0'
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1097	10.67*	1.540E+00	1.358E+01	1.358E+01	10.02
BI-214	609.31	828	46.30	3.560E+00	1.022E+00	1.022E+00	15.01
	1120.29	185	15.10*	1.978E+00	1.258E+00	1.258E+00	38.62
	1764.49	157	15.80	1.323E+00	1.531E+00	1.531E+00	32.92
RA-226	186.21	398	3.28*	9.116E+00	2.706E+00	2.706E+00	41.32
RA-228	93.35	477	3.50	8.292E+00	3.344E+00	3.380E+00	38.78
	969.11	275	16.60*	2.281E+00	1.476E+00	1.492E+00	23.69
TH-234	63.29		3.80*	3.510E+00	Li	ne Not Found	
	92.60	477	5.41	8.292E+00	2.164E+00	2.164E+00	38.78
U-235	143.76		10.50*	9.986E+00	Li	ne Not Found	
						105402 400 -422	10

L95403 189 of 332

	163.35 185.71 398 205.31	4.70 54.00 4.70	9.656E+00 9.116E+00 8.614E+00	Line Not Found 1.644E-01 1.644E-01 Line Not Found	41.32
Nuclide Ty	pe: NATURAL				
-	-			Uncorrected Decay Corr	2-Sigma
Nuclide	Energy Area	%Abn	%Eff	pCi/q Dry pCi/q Dry	%Error
TL-208	583.17 577	30.25*	3.705E+00	1.048E+00 1.082E+00	20.07
PB-212	238.63 1904	44.60*	7.796E+00	1.114E+00 1.151E+00	7.50
PB-214	295.21 737	19.20	6.641E+00	1.175E+00 1.176E+00	17.45
	351.92 1167	37.20*	5.756E+00	1.109E+00 1.109E+00	14.76
TH-232	911.21 402	27.70*	2.424E+00	1.219E+00 1.219E+00	24.84
Nuclide Ty	pe: natural				
				Uncorrected Decay Corr	2-Sigma
Nuclide	Energy Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
AC-228	835.50	1.75	2.638E+00	Line Not Found	
	911.07 402	27.70*	2.424E+00	1.219E+00 1.232E+00	24.84
Flag: "*"	= Keyline				
-	***				

Summary of Nuclide Activity Page: 2 Acquisition date : 17-MAR-2022 14:52:09 Sample ID : 01L95403-1

Total number of lines in spectrum 18 Number of unidentified lines 6

Number of lines tentatively identified by NID 12 66.67%

Nuclide Type :

e e			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flag	S
K-40	1.28E+09Y	1.00	1.358E+01	1.358E+01	0.136E+01	10.02	
BI-214	1600.00Y	1.00	1.258E+00	1.258E+00	0.486E+00	38.62	
RA-226	1600.00Y	1.00	2.706E+00	2.706E+00	1.118E+00	41.32	
RA-228	5.75Y	1.01	1.476E+00	1.492E+00	0.354E+00	23.69	
TH-234	4.47E+09Y	1.00	2.164E+00	2.164E+00	0.839E+00	38.78 K	
U-235	7.04E+08Y	1.00	1.644E-01	1.644E-01	0.679E-01	41.32 K	
				MALE SOUR PARK STAR PARK SOUR SOUR ALLOW MALES			

Total Activity : 2.135E+01 2.136E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	1.048E+00	1.082E+00	0.217E+00	20.07
PB-212	1.91Y	1.03	1.114E+00	1.151E+00	0.086E+00	7.50
PB-214	1600.00Y	1.00	1.109E+00	1.109E+00	0.164E+00	14.76
TH-232	1.41E+10Y	1.00	1.219E+00	1.219E+00	0.303E+00	24.84
	Total Acti	vity :	4.490E+00	4.561E+00		

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
AC-228	5.75Y	1.01	1.219E+00	1.232E+00	0.306E+00	24.84

Total Activity: 1.219E+00 1.232E+00

Grand Total Activity: 2.706E+01 2.715E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3 Acquisition date : 17-MAR-2022 14:52:09 Sample ID : 01L95403-1

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
3	74.88	211	1427	0.77	150.30	147	11	3.39E-03	62.7	5.72E+00	
3	77.11	575	1303	0.82	154.75	147	11	9.27E-03	20.4	6.11E+00	
1	87.32	263	1190	1.12	175.15	173	6	4.24E-03	47.9	7.65E+00	
4	241.56	677	1146	1.86	483.41	470	20	1.09E-02	23.3	7.73E+00	
1	338.21	466	869	1.55	676.59	671	11	7.51E-03	26.1	5.95E+00	
1	510.80	273	925	2.66	1021.56	1013	20	4.40E-03	70.9	4.18E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 18 Number of unidentified lines 6 Number of lines tentatively identified by NID 12 66.67%

Nuclide Type :

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	
K - 40	1.28E+09Y	1.00	1.358E+01	1.358E+01	0.136E+01	10.02	
BI-214	1600.00Y	1.00	1.081E+00	1.081E+00	0.140E+00	12.99	
RA-226	1600.00Y	1.00	2.706E+00	2.706E+00	1.118E+00	41.32	
RA-228	5.75Y	1.01	1.476E+00	1.492E+00	0.354E+00	23.69	
	Total Acti	vitv :	1.884E+01	1.886E+01			

Nuclide Type : NATURAL

21.00	-1100					
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	1.048E+00	1.082E+00	0.217E+00	20.07
PB-212	1.91Y	1.03	1.114E+00	1.151E+00	0.086E+00	7.50
PB-214	1600.00Y	1.00	1.135E+00	1.135E+00	0.128E+00	11.27
TH-232	1.41E+10Y	1.00	1.219E+00	1.219E+00	0.303E+00	24.84
	Total Acti	vity:	4.516E+00	4.587E+00		

Nuclide Type : natural

	1/10		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
AC-228	5.75Y	1.01	1.219E+00	1.232E+00	0.306E+00	24.84

Total Activity : 1.219E+00 1.232E+00

Grand Total Activity : 2.458E+01 2.468E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.358E+01 1.082E+00 1.151E+00 1.081E+00 1.135E+00 2.706E+00 1.232E+00 1.492E+00 1.219E+00	1.360E+00 2.172E-01 8.629E-02 1.405E-01 1.280E-01 1.118E+00 3.061E-01 3.535E-01 3.028E-01	6.965E-01 1.791E-01 8.237E-02 4.700E-01 1.114E-01 1.017E+00 2.313E-01 4.220E-01 2.289E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	19,493 6.043 13,967 2.301 10.190 2.661 5.327 3.536 5.326
Non-Ide	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 CS-137 LA-138 BI-212 PA-234M TH-234 U-235 U-238	2.373E-02 1.809E-02 -1.311E-02 1.532E+00 -2.786E+00 3.169E-01 6.268E-02 -2.786E+00	4.376E-02 3.945E-02 6.369E-02 5.193E-01 5.066E+00 1.833E+00 2.156E-01 5.066E+00	7.376E-02 6.620E-02 1.021E-01 9.377E-01 7.426E+00 2.692E+00 3.086E-01 7.426E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.322 0.273 -0.128 1.634 -0.375 0.118 0.203 -0.375

```
,03/18/2022 08:06,02/13/2022 13:37,
                                                              2.140E+01,L95403-1 SS AN
A,01L95403-1
                    , NORMK
                                           ,11/17/2021 15:33,01S25121819
B,01L95403-1
C, K-40
           , YES,
                    1.358E+01,
                                  1.360E+00,
                                                 6.965E-01,
                                                                 19.493
C, TL-208
           , YES,
                    1.082E+00,
                                                 1.791E-01,,
                                                                  6.043
                                  2.172E-01,
                                                 8.237E-02,,
C, PB-212
           , YES,
                    1.151E+00,
                                  8.629E-02.
                                                                 13.967
           , YES,
                                                 4.700E-01,,
C, BI-214
                    1.081E+00,
                                  1.405E-01,
                                                                  2.301
           , YES,
C, PB-214
                    1.135E+00,
                                  1.280E-01,
                                                 1.114E-01,
                                                                 10.190
C, RA-226
                    2.706E+00,
                                                 1.017E+00,,
                                                                  2.661
           , YES,
                                  1.118E+00,
                                                                  5.327
C, AC-228
                    1.232E+00,
                                  3.061E-01,
                                                 2.313E-01,,
           , YES,
C, RA-228
           , YES,
                    1.492E+00,
                                  3.535E-01,
                                                 4.220E-01,,
                                                                  3.536
                                                 2.289E-01,,
                                                                  5.326
C, TH-232
           , YES,
                    1.219E+00,
                                  3.028E-01,
                                                 7.376E-02,,
                                                                  0.322
                    2.373E-02,
                                  4.376E-02,
C, CO-60
           ,NO,
C, CS-137
                    1.809E-02,
                                  3.945E-02,
                                                                  0.273
           ,NO,
                                                 6.620E-02,,
C, LA-138
           ,NO,
                   -1.311E-02,
                                  6.369E-02,
                                                 1.021E-01,,
                                                                 -0.128
C, BI-212
           ,NO,
                    1.532E+00,
                                  5.193E-01,
                                                 9.377E-01,,
                                                                  1.634
           ,NO,
C, PA-234M
                   -2.786E+00,
                                  5.066E+00,
                                                 7.426E+00,,
                                                                 -0.375
C, TH-234
           ,NO,
                    3.169E-01,
                                  1.833E+00,
                                                 2.692E+00,,
                                                                  0.118
C, U-235
           ,NO,
                    6.268E-02,
                                  2.156E-01,
                                                 3.086E-01,,
                                                                  0.203
C, U-238
                   -2.786E+00,
                                                 7.426E+00,,
                                                                 -0.375
           ,NO,
                                  5.066E+00,
```

Analyst\

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:31:28.83 TBE02 51-TP42214B HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:31:04.83

LIMS No., Customer Name, Client ID: L95403-2 SS ANCHOR QEA

Sample ID : 02L95403-2 Smple Date: 13-FEB-2022 13:37:00.

Sample Type : SS Geometry : 02S25121819 Quantity : 3.23000E+01 g Dry BKGFILE : 02BG030422MT Start Channel: 80 Energy Tol : 2.00000 Real Time : 0 18:00:10.93 Pk Srch Sens: 9.00000 Live time : 0 18:00:00.00

End Channel : 4090 Pk Srch Sens: 9.0000 MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	63.14*	192	2312	1.04	111.02	6.08E+00	2.96E-03	48.5	
- 2	0	77.11*	1313	1760	0.91	139.12	8.44E+00	2.03E-02	6.1	
3	5	87.14*	821	1801	1.34	159.30	9.45E+00	1.27E-02	10.3	1.92E+01
4 5	5	89.80	547	1511	1.23	164.65	9.63E+00	8.44E-03	12.6	
5	5	92.78*	728	1650	1.38	170.64	9.81E+00	1.12E-02	12.2	
, 6	0	185.87*	512	1786	1.01	357.95	8.34E+00	7.91E-03	18.0	
7	0	209.21	329	1246	0.85	404.92	7.66E+00	5.07E-03	19.4	
8	5	238.60*	2652	959	1.02	464.07	6.92E+00	4.09E-02	2.9	2.70E+00
9	5	241.60*	582	1326	1.51	470.11	6.85E+00	8.99E-03	13.2	
10	0	295.07*	. 770	1200	1.14	577.70	5.79E+00	1.19E-02	10.4	
11	0	338.33*	524	776	0.96	664.75	5.15E+00	8.08E-03	11.2	
12	0	351.86*	1260	875	1.19	691.97	4.97E+00	1.94E-02	6.0	
13	0	463.02	212	460	1.25	915.68	3.88E+00	3.27E-03	19.6	
14	0	510.88*	373	859	2.20	1011.99	3.54E+00	5.75E-03	24.8	
15	0	583.03*	787	493	1.30	1157.19	3.12E+00	1.22E-02	7.4	
16	0	609.14*	897	681	1.38	1209.74	2.99E+00	1.38E-02	7.9	
17	0	727.15	227	252	2.04	1447.24	2.51E+00	3.50E-03	14.8	
18	0	911.06*	545	363	1.65	1817.39	2.00E+00	8.41E-03	9.6	
19	0	968.83	334	170	1.71	1933.64	1.88E+00	5.16E-03	9.2	
20	0	1120.05*	202	261	1.99	2238.04	1.63E+00	3.12E-03	21.3	
21	0	1460.37*	1549	116	2.20	2923.10	1.26E+00	2.39E-02	3.3	
22	0	1764.20*	132	55	2.07	3534.78	1.08E+00	2.03E-03	17.6	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	7 F				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1549	10.67*	1.263E+00	1.484E+01	1.484E+01	6.69
BI-214	609.31	897	46.30	2.991E+00	8.362E-01	8.362E-01	15.79
	1120.29	202	15.10*	1.627E+00	1.064E+00	1.064E+00	42.69
	1764.49	132	15.80	1.083E+00	9.930E-01	9.931E-01	35.26
RA-226	186.21	512	3.28*	8.336E+00	2.420E+00	2.420E+00	35.95
RA-228	93.35	728	3.50	9.805E+00	2.739E+00	2.769E+00	24.34
						L05403 105 of 3	22

L95403 195 of 332

TH-234 U-235	969.11 63.29 92.60 143.76 163.35 185.71 205.31	334 192 728 512	16.60* 3.80* 5.41 10.50* 4.70 54.00 4.70	1.883E+00 6.076E+00 9.805E+00 9.647E+00 9.042E+00 8.336E+00 7.767E+00	1.381E+00 1.396E+00 1.073E+00 1.073E+00 1.772E+00 1.772E+00 Line Not Found 1.470E-01 1.470E-01 Line Not Found	35.95
Nuclide Ty	rpe: NATUR	AL				
1	1				Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
TL-208	583.17	787	30.25*	3.120E+00	1.077E+00 1.114E+00	14.83
BI-212	727.17	227	7.56*	2.514E+00	1.539E+00 1.590E+00	29.59
PB-212	238.63	2652	44.60*	6.915E+00	1.110E+00 1.147E+00	5.82
PB-214	295.21	770	19.20	5.795E+00	8.941E-01 8.942E-01	20.84
	351.92	1260	37.20*	4.970E+00	8.797E-01 8.797E-01	12.09
TH-232	911.21	545	27.70*	2.005E+00	1.267E+00 1.267E+00	19.12
Nuclide Ty	pe: natur	al				
					Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
AC-228	835.50		1.75	2.188E+00		
	911.07	545	27.70*	2.005E+00	1.267E+00 1.281E+00	19.12

Summary of Nuclide Activity Page: 2
Sample ID: 02L95403-2 Acquisition date: 18-MAR-2022 11:31:04

Total number of lines in spectrum 22
Number of unidentified lines 8

Number of lines tentatively identified by NID 14 63.64%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.484E+01	1.484E+01	0.099E+01	6.69
BI-214	1600.00Y	1.00	1.064E+00	1.064E+00	0.454E+00	42.69
RA-226	1600.00Y	1.00	2.420E+00	2.420E+00	0.870E+00	35.95
RA-228	5.75Y	1.01	1.381E+00	1.396E+00	0.256E+00	18.36
TH-234	4.47E+09Y	1.00	1.073E+00	1.073E+00	1.039E+00	96.91
U-235	7.04E+08Y	1.00	1.470E-01	1.470E-01	0.528E-01	35.95 K
			ALE MAN 1800 MINO 1800 MINO 1800 AND 1800 AND			
	Total Acti	.vity :	2.093E+01	2.094E+01		

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	1.077E+00	1.114E+00	0.165E+00	14.83
BI-212	1.91Y	1.03	1.539E+00	1.590E+00	0.471E+00	29.59
PB-212	1.91Y	1.03	1.110E+00	1.147E+00	0.067E+00	5.82
PB-214	1600.00Y	1.00	8.797E-01	8.797E-01	1.063E-01	12.09
TH-232	1.41E+10Y	1.00	1.267E+00	1.267E+00	0.242E+00	19.12
	Total Acti	771 + 77 ·	5 874E±00	5 999E+00		

Total Activity : 5.874E+00 5.999E

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error l	Flags
AC-228	5.75Y	1.01	1.267E+00	1.281E+00	0.245E+00	19.12	

Total Activity: 1.267E+00 1.281E+00

Grand Total Activity : 2.807E+01 2.822E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Acquisition date : 18-MAR-2022 11:31:04 Sample ID : 02L95403-2

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	Flags
0	77.11 87.14	1313 821	1760 1801	0.91	139.12 159.30	137	_	2.03E-02 1.27E-02		8.44E+00 9.45E+00	
-5	89.80	547	1511	1.23	164.65	149	29	8.44E-03	25.3	9.63E+00	
-0 5	209.21 241.60	329 582	1246 1326	0.85 1.51	404.92 470.11		_	5.07E-03 8.99E-03		7.66E+00 6.85E+00	
0	338.33	524	776	0.96	664.75	661	8	8.08E-03	22.3	5.15E+00	
0 -	463.02	212	460	1.25	915.68	912	9	3.27E-03	39.1	3.88E+00	
0	510.88	373	859	2.20	1011.99	1003	18	5.75E-03	49.7	3.54E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 22 Number of unidentified lines 8
Number of lines tentatively identified by NID 14 63.64%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.484E+01	1.484E+01	0.099E+01	6.69
BI-214	1600.00Y	1.00	8.700E-01	8.701E-01	1.192E-01	13.70
RA-226	1600.00Y	1.00	2.420E+00	2.420E+00	0.870E+00	35.95
RA-228	5.75Y	1.01	1.381E+00	1.396E+00	0.256E+00	18.36
TH-234	4.47E+09Y	1.00	1.073E+00	1.073E+00	1.039E+00	96.91
	Total Acti	.vity :	2.059E+01	2.060E+01		

Nuclide Type : NATURAL

	7.1.		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	3
TL-208	1.91Y	1.03	1.077E+00	1.114E+00	0.165E+00	14.83	
BI-212	1.91Y	1.03	1.539E+00	1.590E+00	0.471E+00	29.59	
PB-212	1.91Y	1.03	1.110E+00	1.147E+00	0.067E+00	5.82	
PB-214	1600.00Y	1.00	8.832E-01	8.833E-01	0.924E-01	10.46	
TH-232	1.41E+10Y	1.00	1.267E+00	1.267E+00	0.242E+00	19.12	
				Ander State State Area and the Series State State and			
	Total Acti	vity :	5.877E+00	6.002E+00			

Nuclide Type : natural

Olicoriec	cca becay cor.	r Decay Corr	2-519111a	
Nuclide Hlife Decay pCi/g D AC-228 5.75Y 1.01 1.267E+	Dry pCi/g Dry	y 2-Sigma Error		js

Grand Total Activity: 2.773E+01 2.789E+01

Flags: "K" = Keyline not found

Total Activity : 1.267E+00 1.281E+00

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed Combined Activity-MDA Report

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208	1.484E+01 1.114E+00	9.933E-01 1.652E-01	4.345E-01 1.200E-01	0.000E+00 0.000E+00	34.167 9.277
BI-212	1.590E+00	4.705E-01	5.317E-01	0.000E+00	2.991
PB-212	1.147E+00	6.672E-02	6.172E-02	0.000E+00	18.590
BI-214	8.701E-01	1.192E-01	3.223E-01	0.000E+00	2.699
PB-214	8.833E-01	9.235E-02	7.771E-02	0.000E+00	11.366
RA-226	2.420E+00	8.700E-01	7.375E-01	0.000E+00	3.281
AC-228	1.281E+00	2.450E-01	1.565E-01	0.000E+00	8.189
RA-228	1.396E+00	2.563E-01	3.292E-01	0.000E+00	4.241
TH-232	1.267E+00	2.423E-01	1.548E-01	0.000E+00	8.188
TH-234	1.073E+00	1.039E+00	9.231E-01	0.000E+00	1.162
Non-I	dentified Nuclide	es			
	Key-Line	A stronger	MID A	MDA carrons	A ~ t /MDA

CO-60 9.394E-03 3.120E-02 5.256E-02 0.000E+00	Nuclide	Act/MDA
CS-137 3.628E-02 2.996E-02 5.245E-02 0.000E+00 LA-138 2.455E-02 4.447E-02 7.582E-02 0.000E+00 PA-234M -6.569E-01 3.770E+00 5.480E+00 0.000E+00 U-235 1.716E-01 1.494E-01 2.211E-01 0.000E+00	CS-137 LA-138 PA-234M	0.179 0.692 0.324 -0.120 0.776

```
A,02L95403-2
                    ,03/19/2022 05:31,02/13/2022 13:37,
                                                               3.230E+01,L95403-2 SS AN
                    , NORMK
B,02L95403-2
                                            ,08/20/2021 05:25,02S25121819
C, K-40
                                                 4.345E-01,,
           , YES,
                    1.484E+01,
                                   9.933E-01,
                                                                 34.167
           , YES,
C, TL-208
                    1.114E+00,
                                   1.652E-01,
                                                 1.200E-01,,
                                                                  9.277
           , YES,
                                                 5.317E-01,,
                                                                  2.991
C, BI-212
                    1.590E+00,
                                   4.705E-01,
C, PB-212
           , YES,
                    1.147E+00,
                                   6.672E-02,
                                                 6.172E-02,,
                                                                 18.590
C,BI-214
           , YES,
                    8.701E-01,
                                                 3.223E-01,,
                                   1.192E-01,
                                                                  2.699
C, PB-214
                    8.833E-01,
           , YES,
                                   9.235E-02,
                                                 7.771E-02,,
                                                                 11.366
C, RA-226
           , YES,
                    2.420E+00,
                                   8.700E-01,
                                                 7.375E-01,,
                                                                  3.281
C, AC-228
           , YES,
                    1.281E+00,
                                   2.450E-01,
                                                 1.565E-01,,
                                                                  8.189
           , YES,
C, RA-228
                    1.396E+00,
                                                 3.292E-01,,
                                   2.563E-01,
                                                                  4.241
C, TH-232
           , YES,
                    1.267E+00,
                                   2.423E-01,
                                                 1.548E-01,,
                                                                  8.188
           , YES,
C, TH-234
                    1.073E+00,
                                   1.039E+00,
                                                 9.231E-01,,
                                                                  1.162
C, CO-60
                    9.394E-03,
                                                 5.256E-02,,
           ,NO,
                                   3.120E-02,
                                                                  0.179
           ,NO,
C, CS-137
                    3.628E-02,
                                   2.996E-02,
                                                 5.245E-02,,
                                                                  0.692
C, LA-138
           ,NO,
                    2.455E-02,
                                   4.447E-02,
                                                 7.582E-02,,
                                                                  0.324
C, PA-234M
          ,NO,
                   -6.569E-01,
                                   3.770E+00,
                                                 5.480E+00,,
                                                                 -0.120
           , NO ,
                                                 2.211E-01,,
C, U-235
                    1.716E-01,
                                   1.494E-01,
                                                                  0.776
C, U-238
           , NO ,
                   -6.569E-01,
                                   3.770E+00,
                                                 5.480E+00,,
                                                                 -0.120
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:14.64

TBE14 54-TP42603C HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:13:46:19

LIMS No., Customer Name, Client ID: L95403-3 SS ANCHOR QEA

Sample ID : 14L95403-3 Smple Date: 13-FEB-2022 13:37:00.

 Sample Type
 : SS
 Geometry
 : 14S25121719

 Quantity
 : 3.57000E+01 g Dry
 BKGFILE
 : 14BG030422MT

 Start Channel
 : 80
 Energy Tol
 : 2.00000
 Real Time
 : 0 18:00:12.89

 End Channel
 : 4090
 Pk Srch Sens: 9.00000
 Live time
 : 0 18:00:00.00

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk It Energy Bkqnd FWHM Channel %Eff Cts/Sec %Err Area 74.94* 0.77 1 4 514 1425 147.04 7.23E+00 7.93E-03 13.1 8.30E+00 2 4 0.81 77.16 1220 1116 151.49 7.57E+00 1.88E-02 5.2 3 6 84.40* 86 1467 1.20 165.98 8.49E+00 1.33E-03 83.9 4.47E+00 4 6 87.22* 351 1067 0.84 171.63 8.78E+00 5.41E-03 17.3 5 5 89.95 405 660 0.96 177.08 9.03E+00 6.26E-03 10.2 2.67E+00 6 5 92.89* 633 1312 1.40 182.98 9.26E+00 9.77E-03 12.1 7 1 185.97* 515 1260 1.21 369.32 8.55E+00 7.94E-03 15.4 1.40E+00 1 8 209.31 303 1062 1.13 416.06 7.87E+00 4.68E-03 20.2 1.41E+00 9 6 238.65* 2289 709 0.99 474.81 7.10E+00 3.53E-02 3.1 2.12E+00 10 6 241.46 580 1021 1.64 480.43 7.03E+00 8.95E-03 12.0 11 1 295.22* 637 671 1.05 588.08 5.91E+00 9.83E-03 8.7 6.43E-01 12 1 338.32 497 692 0.97 674.39 5.22E+00 7.66E-03 10.5 8.49E-01 13 351.92* 1 1000 669 1.21 701.63 5.03E+00 1.54E-02 6.2 9.22E-01 14 1 510.90* 159 724 2.55 1019.97 3.51E+00 2.45E-03 52.0 1.16E+00 1.27 1164.68 15 1 583.16* 604 381 3.07E+00 9.31E-03 7.9 2.15E+00 609.27* 1.44 1216.97 7.6 1.84E+00 16 1 749 483 2.94E+00 1.16E-02 17 1 661.51 89 376 1.07 1321.59 2.70E+00 1.38E-03 43.4 1.13E+00 18 1 727.61 110 336 1.79 1454.00 2.45E+00 1.70E-03 35.0 2.16E+00 19 911.10* 464 245 1.81 1821.50 1.94E+00 7.15E-03 9.3 6.72E-01 1 1.57 1937.38 1.82E+00 2.93E-03 22.3 4.07E+00 20 968.94* 190 1 363 1 21 1120.28* 77 209 1.41 2240.54 1.57E+00 1.19E-03 41.1 2.34E+00 22 1 1460.65* 1273 168 1.92 2922.47 1.21E+00 1.97E-02 4.0 1.71E+00

Flag: "*" = Peak area was modified by background subtraction

67

140

Nuclide Line Activity Report

1764.31*

Nuclide Type:

23

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1273	10.67*	1.210E+00	1.152E+01	1.152E+01	8.00
CS-137	661.66	89	85.12*	2.701E+00	4.535E-02	4.544E-02	86.79
BI-214	609.31	749	46.30	2.937E+00	6.436E-01	6.436E-01	15.21
	1120.29	77	15.10*	1.565E+00	3.816E-01	3.816E-01	82.12
	1764.49	140	15.80	1.037E+00	9.986E-01	9.986E-01	36.28
						105100 001 66	

L95403 201 of 332

2.36 3530.99 1.04E+00 2.16E-03 18.1 6.67E-01

	ž.							
RA-226	186.21	515	3.28*	8.546E+00	2.145E+00	2.146E+00	30.70	
RA-228	93.35 969.11	633 190	3.50 16.60*	9.263E+00 1.818E+00	2.281E+00 7.363E-01	2.306E+00 7.444E-01	24.21 44.67	
TH-234	63.29	ALT THE EAST SEE SEE	3.80*	5.083E+00	Lir	ne Not Found		
U-235	92.60 143.76	633	5.41 10.50*	9.263E+00 9.757E+00	1.476E+00	1.476E+00 ne Not Found	24.21	
0 255	163.35		4.70	9.227E+00		ne Not Found		
	185.71	515	54.00	8.546E+00	1.303E-01	1.303E-01	30.70	
	205.31		4.70	7.978E+00	Lir	ne Not Found	tion name come page town	
Nuclide	Type: NATUR.	AL						
					Uncorrected	Decay Corr	2-Sigma	
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error	
TL-208	583.17	604	30.25*	3.071E+00	7.591E-01	7.846E-01	15.85	
BI-212	727.17	110	7.56*	2.448E+00	6.959E-01	7.193E-01	69.95	
PB-212	238.63	2289	44.60*	7.096E+00	8.448E-01	8.732E-01	6.21	
PB-214	295.21	637	19.20	5.908E+00	6.561E-01	6.561E-01	17.47	
	351.92	1000	37.20*	5.027E+00	6.246E-01	6.246E-01	12.43	
TH-232	911.21	464	27.70*	1.938E+00	1.009E+00	1.009E+00	18.63	
Nuclide	Type: natur	al						
						Decay Corr	2-Sigma	
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry		%Error	
AC-228	835.50		1.75	2.121E+00		ne Not Found		
	911.07	464	27.70*	1.938E+00	1.009E+00	1.020E+00	18.63	

Summary of Nuclide Activity Page: 2
Sample ID: 14L95403-3 Acquisition date: 18-MAR-2022 11:13:46

Total number of lines in spectrum 23 Number of unidentified lines 9

Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.152E+01	1.152E+01	0.092E+01	8.00	
CS-137	30.07Y	1.00	4.535E-02	4.544E-02	3.944E-02	86.79	
BI-214	1600.00Y	1.00	3.816E-01	3.816E-01	3.134E-01	82.12	
RA-226	1600.00Y	1.00	2.145E+00	2.146E+00	0.659E+00	30.70	
RA-228	5.75Y	1.01	7.363E-01	7.444E-01	3.326E-01	44.67	
TH-234	4.47E+09Y	1.00	1.476E+00	1.476E+00	0.357E+00	24.21	K
U-235	7.04E+08Y	1.00	1.303E-01	1.303E-01	0.400E-01	30.70	K
						+ 1	
		1 .					

Total Activity : 1.643E+01 1.644E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Fla	ags
TL-208	1.91Y	1.03	7.591E-01	7.846E-01	1.244E-01	15.85	
BI-212	1.91Y	1.03	6.959E-01	7.193E-01	5.031E-01	69.95	
PB-212	1.91Y	1.03	8.448E-01	8.732E-01	0.542E-01	6.21	
PB-214	1600.00Y	1.00	6.246E-01	6.246E-01	0.777E-01	12.43	
TH-232	1.41E+10Y	1.00	1.009E+00	1.009E+00	0.188E+00	18.63	
				time time and area come and time time and			
	Total Acti	vity:	3.933E+00	4.011E+00			

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.009E+00	1.020E+00	0.190E+00	18.63	
	Total Acti	lvity :	1.009E+00	1.020E+00			

Grand Total Activity : 2.138E+01 2.147E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 14L95403-3

Acquisition date : 18-MAR-2022 11:13:46

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
4 4	74.94 77.16	514 1220	1425 1116	0.77	147.04 151.49			7.93E-03 1.88E-02		7.23E+00 7.57E+00	
6	84.40	86	1467	1.20	165.98			1.33E-03		8.49E+00	
6	87.22	351	1067	0.84	171.63	161	15	5.41E-03	34.5	8.78E+00	
5	89.95	405	660	0.96	177.08	175	15	6.26E-03	20.4	9.03E+00	
1	209.31	303	1062	1.13	416.06	412	9	4.68E-03	40.4	7.87E+00	
6	241.46	580	1021	1.64	480.43	470	21	8.95E-03	24.1	7.03E+00	
1	338.32	497	692	0.97	674.39	670	9	7.66E-03	21.0	5.22E+00	
1	510.90	159	724	2.55	1019.97	1012	17	2.45E-03	****	3.51E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

23 Total number of lines in spectrum Number of unidentified lines 9 Number of lines tentatively identified by NID 14

60.87%

Nuclide Type :

	-71-		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	
K-40	1.28E+09Y	1.00	1.152E+01	1.152E+01	0.092E+01	8.00	
CS-137	30.07Y	1.00	4.535E-02	4.544E-02	3.944E-02	86.79	
BI-214	1600.00Y	1.00	6.439E-01	6.439E-01	0.905E-01	14.05	
RA-226	1600.00Y	1.00	2.145E+00	2.146E+00	0.659E+00	30.70	
RA-228	5.75Y	1.01	7.363E-01	7.444E-01	3.326E-01	44.67	
						÷	
	Total Acti	Lvity :	1.509E+01	1.510E+01			

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	7.591E-01	7.846E-01	1.244E-01	15.85
BI-212	1.91Y	1.03	6.959E-01	7.193E-01	5.031E-01	69.95
PB-212	1.91Y	1.03	8.448E-01	8.732E-01	0.542E-01	6.21
PB-214	1600.00Y	1.00	6.345E-01	6.345E-01	0.643E-01	10.13
TH-232	1.41E+10Y	1.00	1.009E+00	1.009E+00	0.188E+00	18.63
	Total Acti	wity ·	3.943E+00	4.020E+00		

Total Activity: 3.943E+00

Nuclide Type : natural

Nuclide AC-228		-		Decay Corr pCi/g Dry	Decay Corr 2-Sigma Error 0.190E+00	%Error F	lags
	Total Acti	vity :	1.009E+00	1.020E+00			

Grand Total Activity: 2.004E+01 2.014E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

L95403 204 of 332

Interference Report

No interference correction performed Combined Activity-MDA Report

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40. CS-137 TL-208 BI-212 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.152E+01 4.544E-02 7.846E-01 7.193E-01 8.732E-01 6.439E-01 6.345E-01 2.146E+00 1.020E+00 7.444E-01 1.009E+00	9.220E-01 3.944E-02 1.244E-01 5.031E-01 5.424E-02 9.046E-02 6.430E-02 6.587E-01 1.901E-01 3.326E-01 1.880E-01	4.250E-01 4.199E-02 1.120E-01 4.996E-01 4.816E-02 3.255E-01 6.623E-02 5.670E-01 1.412E-01 2.472E-01 1.397E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	27.108 1.082 7.003 1.440 18.133 1.978 9.581 3.784 7.225 3.012 7.224
Non-Ide	ntified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 LA-138 PA-234M TH-234 U-235 U-238	-9.852E-03 2.089E-02 2.587E+00 3.381E-01 9.583E-02 2.587E+00	2.792E-02 3.731E-02 2.831E+00 6.488E-01 9.860E-02 2.831E+00	4.553E-02 6.434E-02 4.845E+00 9.629E-01 1.676E-01 4.845E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.216 0.325 0.534 0.351 0.572 0.534

```
A,14L95403-3
                    ,03/19/2022 05:14,02/13/2022 13:37,
                                                               3.570E+01,L95403-3 SS AN
                    , NORMK
B,14L95403-3
                                            ,08/11/2021 12:59,14S25121719
C, K-40
           , YES,
                                  9.220E-01,
                                                 4.250E-01,,
                    1.152E+01,
                                                                 27,108
C, CS-137
           , YES,
                    4.544E-02,
                                  3.944E-02,
                                                 4.199E-02,,
                                                                  1.082
           , YES,
C, TL-208
                    7.846E-01,
                                  1.244E-01,
                                                 1.120E-01,,
                                                                  7.003
C,BI-212
           , YES,
                    7.193E-01,
                                  5.031E-01,
                                                 4.996E-01,,
                                                                  1.440
           , YES,
                                                 4.816E-02,,
C, PB-212
                    8.732E-01,
                                  5.424E-02,
                                                                 18.133
C, BI-214
           , YES,
                    6.439E-01,
                                  9.046E-02,
                                                 3.255E-01,,
                                                                  1.978
C, PB-214
           , YES,
                    6.345E-01,
                                  6.430E-02,
                                                 6.623E-02,,
                                                                  9.581
C, RA-226
           , YES,
                    2.146E+00,
                                  6.587E-01,
                                                 5.670E-01,,
                                                                  3.784
C, AC-228
           , YES,
                    1.020E+00,
                                  1.901E-01,
                                                 1.412E-01,,
                                                                  7.225
C, RA-228
           , YES,
                    7.444E-01,
                                                 2.472E-01,,
                                  3.326E-01,
                                                                  3.012
           , YES,
C, TH-232
                    1.009E+00,
                                  1.880E-01,
                                                 1.397E-01,,
                                                                  7.224
C, CO-60
           ,NO,
                   -9.852E-03,
                                  2.792E-02,
                                                 4.553E-02,,
                                                                 -0.216
C, LA-138
           ,NO ,
                    2.089E-02,
                                  3.731E-02,
                                                 6.434E-02,,
                                                                  0.325
C, PA-234M , NO ,
                    2.587E+00,
                                  2.831E+00,
                                                 4.845E+00,,
                                                                  0.534
C, TH-234
           ,NO,
                    3.381E-01,
                                  6.488E-01,
                                                 9.629E-01,,
                                                                  0.351
                                                 1.676E-01,,
C, U-235
           ,NO,
                    9.583E-02,
                                  9.860E-02,
                                                                  0.572
C, U-238
           ,NO,
                    2.587E+00,
                                  2.831E+00,
                                                 4.845E+00,,
                                                                  0.534
```

Analyst:

VAX/VMS Teledyne Brown Enq. Laboratory Gamma Report: 18-MAR-2022 08:07:09.71 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:09.62

LIMS No., Customer Name, Client ID: L95403-4 SS ANCHOR QEA

Sample ID : 11L95403-4 Smple Date: 13-FEB-2022 13:37:00.

Sample Type : SS Geometry : 11S25121819 : 2.67000E+01 g Dry Quantity BKGFILE : 11BG030422MT Start Channel: 80 Energy Tol : 2.00000 Real Time : 0 17:14:46.96

Pk Srch Sens: 9.00000 Live time : 0 17:14:15.60 End Channel : 4090 MDA Multiple : 4.6600 Library Used: NORMK

Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.48*	483	2243	1.10	91.59	9.09E+00	7.78E-03	22.0	
2	0	63.39*	207	2438	1.09	125.39	1.09E+01	3.33E-03	47.7	
3	0	77.39*	1096	2306	1.00	153.39	1.09E+01	1.77E-02	8.3	
4	2	84.71*	283	1987	1.41	168.02	1.07E+01	4.55E-03	32.9	2.18E+00
5	2	87.29*	487	1529	1.08	173.17	1.06E+01	7.85E-03	15.0	
6	2	90.16	356	1218	1.13	178.91	1.04E+01	5.73E-03	15.2	4.19E+00
7	2	92.88*	556	1910	1.43	184.35	1.03E+01	8.96E-03	17.8	
8	0	186.12*	293	1817	1.33	370.78	6.83E+00	4.72E-03	31.3	
9	4	238.87*	1875	1050	1.41	476.24	5.68E+00	3.02E-02	4.2	1.77E+00
10	4	241.82	644	1445	1.79	482.15	5.63E+00	1.04E-02	12.9	
11	0	295.37*	699	1105	1.42	589.22	4.83E+00	1.13E-02	10.3	
12	0	338.34	426	1036	1.42	675.13	4.34E+00	6.87E-03	15.4	
13	0	352.26*	1403	1048	1.43	702.95	4.20E+00	2.26E-02	5.8	
14	0	511.35*	383	1107	2.59	1021.04	3.08E+00	6.17E-03	29.2	
15	0	583.60*	507	652	1.60	1165.49	2.74E+00	8.16E-03	12.5	
16	0	609.66*	1052	728	1.54	1217.60	2.64E+00	1.69E-02	7.2	
17	0	911.62*	425	316	1.92	1821.36	1.80E+00	6.86E-03	11.5	
18	0	969.56*	252	245	2.00	1937.18	1.70E+00	4.06E-03	14.8	
19	0	1120.74*	219	334	2.67	2239.48	1.48E+00	3.53E-03	22.5	
20	0	1461.39*	1265	209	1.96	2920.59	1.15E+00	2.04E-02	4.6	
21	0	1765.21*	214	133	2.21	3528.07	9.86E-01	3.45E-03	16.9	

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	4 1				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1265	10.67*	1.152E+00	1.678E+01	1.678E+01	9.26
BI-214	609.31	1052	46.30	2.637E+00	1.405E+00	1.405E+00	14.43
	1120.29	219	15.10*	1.476E+00	1.601E+00	1.601E+00	44.98
	1764.49	214	15.80	9.865E-01	2.239E+00	2.239E+00	33.82
RA-226	186.21	293	3.28*	6.828E+00	2.132E+00	2.132E+00	62.56
RA-228	93.35	556	3.50	1.033E+01	2.508E+00	2.535E+00	35.59
	969.11	252	16.60*	1.700E+00	1.458E+00	1.473E+00	29.61
						105400 007 -50	.00

L95403 207 of 332

TH-234	63.29 92.60	207 556	3.80* 5.41	1.086E+01 1.033E+01	8.176E-01 1.623E+00	8.176E-01 1.623E+00	95.47 35.59
Nuclide Ty	pe: NATURA	L					
Nuclide TL-208 PB-212 PB-214 TH-232	Energy 583.17 238.63 295.21 351.92 911.21	Area 507 1875 699 1403 425	%Abn 30.25* 44.60* 19.20 37.20* 27.70*	%Eff 2.743E+00 5.683E+00 4.831E+00 4.204E+00 1.804E+00	Uncorrected pCi/g Dry 9.958E-01 1.207E+00 1.229E+00 1.464E+00 1.389E+00	Decay Corr pCi/g Dry 1.028E+00 1.246E+00 1.229E+00 1.464E+00 1.389E+00	2-Sigma %Error 24.92 8.43 20.66 11.63 22.92
Nuclide Ty	/pe: natura	1					
Nuclide AC-228	Energy 835.50 911.07	Area 425	%Abn 1.75 27.70*	%Eff 1.963E+00 1.804E+00	Uncorrected pCi/g Dry Lir 1.389E+00	Decay Corr pCi/g Dry ne Not Found 1.403E+00	2-Sigma %Error 22.92

Summary of Nuclide Activity Page: 2
Sample ID: 11L95403-4 Acquisition date: 17-MAR-2022 14:52:09

Total number of lines in spectrum 21
Number of unidentified lines 8

Number of lines tentatively identified by NID 13 61.90%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.678E+01	1.678E+01	0.155E+01	9.26
BI-214	1600.00Y	1.00	1.601E+00	1.601E+00	0.720E+00	44.98
RA-226	1600.00Y	1.00	2.132E+00	2.132E+00	1.334E+00	62.56
RA-228	5.75Y	1.01	1.458E+00	1.473E+00	0.436E+00	29.61
TH-234	4.47E+09Y	1.00	8.176E-01	8.176E-01	7.805E-01	95.47
	Total Acti	vitv :	2.279E+01	2.281E+01		

Nuclide Type : NATURAL

Nuclide	Hlife	Decay	Uncorrected pCi/g Dry	Decay Corr pCi/q Dry	Decay Corr 2-Sigma Error	2-Sigma %Error Flags
		- 4	1 1			
TL-208	1.91Y	1.03	9.958E-01	1.028E+00	0.256E+00	24.92
PB-212	1.91Y	1.03	1.207E+00	1.246E+00	0.105E+00	8.43
PB-214	1600.00Y	1.00	1.464E+00	1.464E+00	0.170E+00	11.63
TH-232	1.41E+10Y	1.00	1.389E+00	1.389E+00	0.318E+00	22.92
	Total Acti	vity :	5.055E+00	5.127E+00		

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide		-4	1 . 9 1	1	2-Sigma Error		Flags
AC-228	5.75Y	1.01	1.389E+00	1.403E+00	0.322E+00	22.92	

Grand Total Activity: 2.923E+01 2.934E+01

Flags: "K" = Keyline not found "M" = Manually accepted

Total Activity: 1.389E+00 1.403E+00

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Acquisition date : $17-MAR-2022 \overline{14:52:09}$

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	46.48	483	2243	1.10	91.59			7.78E-03			
0	77.39	1096	2306	1.00	153.39	151	6	1.77E-02	16.5	1.09E+01	
2	84.71	283	1987	1.41	168.02	163	14	4.55E-03	65.9	1.07E+01	
2	87.29	487	1529	1.08	173.17	163	14	7.85E-03	29.9	1.06E+01	
2	90.16	356	1218	1.13	178.91	177	14	5.73E-03	30.5	1.04E+01	
4	241.82	644	1445	1.79	482.15	468	21	1.04E-02	25.8	5.63E+00	
0	338.34	426	1036	1.42	675.13	670	11	6.87E-03	30.7	4.34E+00	
0	511.35	383	1107	2.59	1021.04	1012	22	6.17E-03	58.5	3.08E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 2.1 Number of unidentified lines 8
Number of lines tentatively identified by NID 13 61.90%

Nuclide Type :

	2 L						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.678E+01	1.678E+01	0.155E+01	9.26	
BI-214	1600.00Y	1.00	1.470E+00	1.470E+00	0.189E+00	12.85	
RA-226	1600.00Y	1.00	2.132E+00	2.132E+00	1.334E+00	62.56	
RA-228	5.75Y	1.01	1.458E+00	1.473E+00	0.436E+00	29.61	
TH-234	4.47E+09Y	1.00	8.176E-01	8.176E-01	7.805E-01	95.47	
	Total Act	ivity :	2.266E+01	2.268E+01			

Nuclide Type : NATURAL

m	- / 1					
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	9.958E-01	1.028E+00	0.256E+00	24.92
PB-212	1.91Y	1.03	1.207E+00	1.246E+00	0.105E+00	8.43
PB-214	1600.00Y	1.00	1.391E+00	1.391E+00	0.141E+00	10.16
TH-232	1.41E+10Y	1.00	1.389E+00	1.389E+00	0.318E+00	22.92
				MOTO 1700 NAVE SATE ATEM STORE MADE STORE		
				- 0- 1- 00		

Total Activity: 4.982E+00 5.054E+00

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.389E+00	1.403E+00	0.322E+00	22.92	

Total Activity: 1.389E+00 1.403E+00

Grand Total Activity: 2.903E+01 2.913E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed Combined Activity-MDA Report

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.678E+01 1.028E+00 1.246E+00 1.470E+00 1.391E+00 2.132E+00 1.403E+00 1.473E+00 1.389E+00 8.176E-01	1.555E+00 2.563E-01 1.050E-01 1.890E-01 1.414E-01 1.334E+00 3.216E-01 4.363E-01 3.182E-01 7.805E-01	7.497E-01 2.157E-01 1.043E-01 5.569E-01 1.444E-01 1.296E+00 2.754E-01 5.049E-01 2.725E-01 7.981E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	22.385 4.768 11.943 2.640 9.635 1.644 5.096 2.918 5.095 1.024
	ntified Nuclides Key-Line		MDA (pCi/g Dry)	MDA error	Act/MDA

```
A,11L95403-4
                    ,03/18/2022 08:07,02/13/2022 13:37,
                                                              2.670E+01,L95403-4 SS AN
B,11L95403-4
                                            ,02/10/2022 09:58,11S25121819
                    , NORMK
C, K-40
           , YES,
                    1.678E+01,
                                  1.555E+00,
                                                 7.497E-01,
                                                                 22.385
C, TL-208
           , YES,
                                                                  4.768
                    1.028E+00,
                                  2.563E-01,
                                                 2.157E-01,,
           ,YES,
C, PB-212
                    1.246E+00,
                                                 1.043E-01,,
                                                                 11.943
                                  1.050E-01,
           , YES,
C,BI-214
                    1.470E+00,
                                  1.890E-01,
                                                 5.569E-01,,
                                                                  2.640
           , YES,
C, PB-214
                    1.391E+00,
                                  1.414E-01,
                                                 1.444E-01,,
                                                                  9.635
C, RA-226
           , YES,
                    2.132E+00,
                                  1.334E+00,
                                                 1.296E+00,,
                                                                  1.644
C, AC-228
           , YES,
                    1.403E+00,
                                  3.216E-01,
                                                 2.754E-01,,
                                                                  5.096
C, RA-228
           , YES,
                    1.473E+00,
                                  4.363E-01,
                                                 5.049E-01,,
                                                                  2.918
C, TH-232
           , YES,
                    1.389E+00,
                                  3.182E-01,
                                                 2.725E-01,,
                                                                  5.095
C, TH-234
           , YES,
                    8.176E-01,
                                  7.805E-01,
                                                 7.981E-01,,
                                                                  1.024
C, CO-60
           ,NO,
                    6.016E-02,
                                  5.007E-02,
                                                 8.966E-02,,
                                                                  0.671
C, CS-137
           ,NO,
                    3.262E-02,
                                  4.891E-02,
                                                 8.317E-02,,
                                                                  0.392
C, LA-138
           ,NO ,
                    1.077E-02,
                                  6.984E-02,
                                                 1.232E-01,,
                                                                  0.087
C,BI-212
           ,NO,
                    1.629E+00,
                                  6.298E-01,
                                                 1.127E+00,,
                                                                  1.445
C, PA-234M
           ,NO,
                    8.169E+00,
                                  5.190E+00,
                                                 9.382E+00,,
                                                                  0.871
C, U-235
           ,NO,
                   -1.355E-01,
                                  2.442E-01,
                                                 3.662E-01,,
                                                                 -0.370
C, U-238
           , NO ,
                    8.169E+00,
                                  5.190E+00,
                                                 9.382E+00,,
                                                                  0.871
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:38.90 TBE13 31-TP10727B HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:13:56.06

18E13 31-1P10/2/8 Apge ^^^^ Aquisition Date/IIMe: 18-MAR-2022 11:13:56.06

LIMS No., Customer Name, Client ID: L95403-5 SS ANCHOR QEA

Sample ID : 13L95403-5 Smple Date: 13-FEB-2022 13:37:00.

End Channel: 4090 Pk Srch Sens: 9.00000 Live time: 0 18:00:00.00 MDA Multiple: 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentfied

D1-	T.L.	Encorer	7) 70 0 0	Dleana	אוז זיגיניד	Channal	9.TJ f f	Cta/Coa	0. T. 70.70	P-1 +-
Pk	ΙL	Energy	Area	Bkgnd	rwhm	Channel	%Eff	Cts/Sec	9 L I I	Fit
1	1	74.95*	168	1533	0.71	149.81	3.49E+00	2.59E-03	42.9	8.98E+00
2	1	77.15*	482	1120	0.84	154.19	3.83E+00	7.43E-03	13.5	3.92E+00
3	1	84.51*	162	1375	1.36	168.88	4.91E+00	2.51E-03	44.6	4.02E+00
4	1	87.30*	285	1007	0.90	174.44	5.29E+00	4.40E-03	20.5	3.30E+00
5	1	92.71*	430	1292	1.18	185.24	5.95E+00	6.63E-03	17.1	6.73E-01
6	1	185.74*	446	1395	1.29	370.86	7.62E+00	6.89E-03	17.9	2.76E+00
7	1	209.10	242	1084	1.02	417.49	7.11E+00	3.73E-03	24.4	6.71E-01
8	6	238.51*	2079	669	0.97	476.18	6.49E+00	3.21E-02	3.4	9.37E-01
9	6	241.47	614	1108	1.68	482.07	6.43E+00	9.48E-03	11.9	
10	1	295.06*	663	880	1.10	589.04	5.49E+00	1.02E-02	10.0	1.48E+00
11	1	299.84	206	673	1.12	598.57	5.42E+00	3.18E-03	22.8	1.26E+00
12	1	338.19*	489	785	1.32	675.12	4.91E+00	7.55E-03	13.0	1.55E+00
13	1	351.72*	1065	730	1.10	702.14	4.75E+00	1.64E-02	6.3	9.47E-01
14	1	510.66*	575	887	2.59	1019.47	3.44E+00	8.87E-03	15.7	1.83E+00
15	1	582.96*	634	326	1.38	1163.84	3.06E+00	9.79E-03	7.5	1.37E+00
16	1	609.03*	804	497		1215.89		1.24E-02	7.2	4.52E-01
17	1	727.16*	113	297		1451.85	2.49E+00	1.74E-03	32.2	6.32E+00
18	1	910.89*	466	323	1.72	1818.95	2.00E+00	7.19E-03	10.9	1.16E+00
19	1	968.80*	272	270		1934.68	1.88E+00		14.9	1.54E+00
20	1	1120.29*	139	166	1.92	2237.48	1.62E+00	2.14E-03	23.3	8.96E-01
21	1	1460.47*	1242	142	1.97	2917.78	1.25E+00	1.92E-02	4.2	9.22E-01
22	1	1763.91*	149	63	2.14	3524.99	1.05E+00	2.29E-03	16.7	1.38E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

MUCTIUE	Type.						
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1242	10.67*	1.246E+00	1.282E+01	1.282E+01	8.31
BI-214	609.31	804	46.30	2.937E+00	8.115E-01	8.116E-01	14.41
	1120.29	139	15.10*	1.623E+00	7.773E-01	7.773E-01	46.62
	1764.49	149	15.80	1.054E+00	1.224E+00	1.224E+00	33.33
RA-226	186.21	446	3.28*	7.616E+00	2.451E+00	2.451E+00	35.88
RA-228	93.35	430	3.50	5.952E+00	2.832E+00	2.863E+00	34.29
						L95403 213 of 3	32

	969.11	272	16.60*	1.881E+00	1.193E+00 1.206E+00	29.88
TH-234	63.29	2007 \$100 \$100 \$100 \$100	3.80*	1.737E+00	Line Not Found	
	92.60	430	5.41	5.952E+00	1.832E+00 1.832E+00	34.29
U-235	143.76		10.50*	8.228E+00	Line Not Found	
	163.35		4.70	8.037E+00	Line Not Found	
	185.71	446	54.00	7.616E+00	1.489E-01 1.489E-01	35.88
	205.31		4.70	7.191E+00	Line Not Found	
	200.01		4.70	7.1711400	Effic Not Todia	
Nuclide Ty	pe: NATUR	AL				
-	_				Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/q Dry pCi/q Dry	%Error
TL-208	583.17	634	30.25*	3.056E+00	9.416E-01 9.732E-01	15.04
BI-212	727.17	113	7.56*	2.491E+00	8.203E-01 8.479E-01	64.48
PB-212	238.63	2079	44.60*	6.489E+00	9.854E-01 1.019E+00	6.88
PB-214	295.21	663	19.20	5.494E+00	8.620E-01 8.621E-01	20.00
110 214	351.92	1065	37.20*	4.746E+00	8.279E-01 8.279E-01	12.58
mir oso			27.70*	2.001E+00	1.154E+00 1.154E+00	21.81
TH-232	911.21	466	27.70^	2.0016+00	1.1546+00 1.1546+00	21.01
Nuclide Ty	me: natur	al				
1	_				Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
AC-228	835.50		1.75		Line Not Found	
F1C ZZO	911.07	466	27.70*	2.001E+00		21.81
	911.U/	400	27.70"	2.0015+00	T. TO TETO T. TO DETO O	& . L . U . L

Summary of Nuclide Activity Page: 2
Sample ID: 13L95403-5 Acquisition date: 18-MAR-2022 11:13:56

Total number of lines in spectrum 22 Number of unidentified lines 9

Number of lines tentatively identified by NID 13 59.09%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.282E+01	1.282E+01	0.106E+01	8.31	
BI-214	1600.00Y	1.00	7.773E-01	7.773E-01	3.624E-01	46.62	
RA-226	1600.00Y	1.00	2.451E+00	2.451E+00	0.879E+00	35.88	
RA-228	5.75Y	1.01	1.193E+00	1.206E+00	0.360E+00	29.88	
TH-234	4.47E+09Y	1.00	1.832E+00	1.832E+00	0.628E+00	34.29	K
U-235	7.04E+08Y	1.00	1.489E-01	1.489E-01	0.534E-01	35.88	K
	4						i.

Total Activity: 1.922E+01 1.923E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	9.416E-01	9.732E-01	1.463E-01	15.04	
BI-212	1.91Y	1.03	8.203E-01	8.479E-01	5.467E-01	64.48	
PB-212	1.91Y	1.03	9.854E-01	1.019E+00	0.070E+00	6.88	
PB-214	1600.00Y	1.00	8.279E-01	8.279E-01	1.042E-01	12.58	
TH-232	1.41E+10Y	1.00	1.154E+00	1.154E+00	0.252E+00	21.81	•
	Total Acti	.vity :	4.729E+00	4.821E+00			

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.154E+00	1.166E+00	0.254E+00	21.81	

Total Activity: 1.154E+00 1.166E+00

Grand Total Activity: 2.510E+01 2.522E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3 Acquisition date : 18-MAR-2022 11:13:56

It.	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	74.95	168	1533	0.71	149.81	147	6	2.59E-03	85.7	3.49E+00	
1	77.15	482	1120	0.84	154.19	153	6	7.43E-03	27.0	3.83E+00	
1	84.51	162	1375	1.36	168.88	165	8	2.51E-03	89.1	4.91E+00	
1	87.30	285	1007	0.90	174.44	172	6	4.40E-03	41.0	5.29E+00	
1	209.10	242	1084	1.02	417.49	414	8	3.73E-03	48.7	7.11E+00	
6	241.47	614	1108	1.68	482.07	470	18	9.48E-03	23.7	6.43E+00	
1	299.84	206	673	1.12	598.57	595	8	3.18E-03	45.6	5.42E+00	
1	338.19	489	785	1.32	675.12	670	11	7.55E-03	26.1	4.91E+00	

510.66 575 887 2.59 1019.47 1012 19 8.87E-03 31.5 3.44E+00

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total num	ber of	lines	in spe	ectrum			22		
Number of	unide	ntified	llines	3			9		
Number of	lines	tentat	ivelv	identified	bv	NID	13	59.	.09%

Nuclide Type :

1

	2 L		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.282E+01	1.282E+01	0.106E+01	8.31	
BI-214	1600.00Y	1.00	8.371E-01	8.371E-01	1.074E-01	12.83	
RA-226	1600.00Y	1.00	2.451E+00	2.451E+00	0.879E+00	35.88	
RA-228	5.75Y	1.01	1.193E+00	1.206E+00	0.360E+00	29.88	
	Total Acti	lvity :	1.730E+01	1.731E+01			

Nuclide Type : NATURAL

	.2 22		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	9.416E-01	9.732E-01	1.463E-01	15.04	
BI-212	1.91Y	1.03	8.203E-01	8.479E-01	5.467E-01	64.48	
PB-212	1.91Y	1.03	9.854E-01	1.019E+00	0.070E+00	6.88	
PB-214	1600.00Y	1.00	8.370E-01	8.370E-01	0.891E-01	10.65	
TH-232	1.41E+10Y	1.00	1.154E+00	1.154E+00	0.252E+00	21.81	
	Total Acti	vity :	4.738E+00	4.830E+00			

Nuclide Type : natural

	-		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.154E+00	1.166E+00	0.254E+00	21.81	

Total Activity : 1.154E+00 1.166E+00

Grand Total Activity : 2.319E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

2.331E+01

Interference Report

No interference correction performed Combined Activity-MDA Report

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40	1.282E+01	1.065E+00	4.820E-01	0.000E+00	26.597
TL-208 BI-212	9.732E-01 8.479E-01	1.463E-01 5.467E-01	1.243E-01 5.457E-01	0.000E+00 0.000E+00	7.829
PB-212	1.019E+00	7.004E-02	5.457E-01 5.823E-02	0.000E+00	1.554 17.492
BI-214	8.371E-01	1.074E-01	3.417E-01	0.000E+00	2.450
PB-214	8.370E-01	8.915E-02	8.110E-02	0.000E+00	10.321
RA-226	2.451E+00	8.794E-01	7.004E-01	0.000E+00	3.499
AC-228	1.166E+00	2.543E-01	1.692E-01	0.000E+00	6.892
RA-228	1.206E+00	3.605E-01	3.356E-01	0.000E+00	3.595
TH-232	1.154E+00	2.515E-01	1.674E-01	0.000E+00	6.891
Non-Id	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/q Dry)	MDA error	Act/MDA

Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60	-5.218E-03	3.143E-02	5.206E-02	0.000E+00	-0.100
CS-137	2.739E-02	3.084E-02	5.192E-02	0.000E+00	0.528
LA-138	-6.998E-04	4.726E-02	7.836E-02	0.000E+00	-0.009
PA-234M	2.694E+00	3.267E+00	5.601E+00	0.000E+00	0.481
TH-234	-2.048E-02	1.816E+00	2.663E+00	0.000E+00	-0.008
U-235	1.177E-01	1.302E-01	2.101E-01	0.000E+00	0.560
U-238	2.694E+00	3.267E+00	5.601E+00	0.000E+00	0.481

```
A, 13L95403-5
                    ,03/19/2022 05:14,02/13/2022 13:37,
                                                               3.040E+01,L95403-5 SS AN
                    , NORMK
                                            ,03/22/2021 07:43,13525030421
B,13L95403-5
C, K-40
                    1.282E+01,
                                  1.065E+00,
                                                 4.820E-01,,
           , YES,
                                                                 26.597
           ,YES,
C, TL-208
                    9.732E-01,
                                                 1.243E-01,,
                                                                  7.829
                                  1.463E-01,
C,BI-212
                                                 5.457E-01,,
           , YES,
                    8.479E-01,
                                  5.467E-01,
                                                                  1.554
C, PB-212
           , YES,
                    1.019E+00,
                                  7.004E-02,
                                                 5.823E-02,,
                                                                 17.492
C, BI-214
           , YES,
                    8.371E-01,
                                                 3.417E-01,,
                                  1.074E-01,
                                                                  2.450
C, PB-214
           , YES,
                    8.370E-01,
                                  8.915E-02,
                                                 8.110E-02,,
                                                                 10.321
C, RA-226
                                                 7.004E-01,,
           , YES,
                    2.451E+00,
                                  8.794E-01,
                                                                  3.499
C, AC-228
           , YES,
                    1.166E+00,
                                                 1.692E-01,,
                                                                  6.892
                                  2.543E-01,
           , YES,
C, RA-228
                    1.206E+00,
                                  3.605E-01,
                                                 3.356E-01,,
                                                                  3.595
C, TH-232
                                                 1.674E-01,,
           , YES,
                    1.154E+00,
                                  2.515E-01,
                                                                  6.891
           ,NO,
                                                 5.206E-02,,
C, CO-60
                   -5.218E-03,
                                  3.143E-02,
                                                                 -0.100
C, CS-137
                    2.739E-02,
                                                 5.192E-02,,
           ,NO ,
                                  3.084E-02,
                                                                  0.528
C, LA-138
                                  4.726E-02,
                                                 7.836E-02,,
           ,NO ,
                   -6.998E-04,
                                                                 -0.009
C, PA-234M
           NO,
                    2.694E+00,
                                  3.267E+00,
                                                 5.601E+00,,
                                                                  0.481
           ,NO,
C, TH-234
                   -2.048E-02,
                                  1.816E+00,
                                                 2.663E+00,,
                                                                 -0.008
C, U-235
           , NO .,
                                                 2.101E-01,,
                   1.177E-01,
                                  1.302E-01,
                                                                 0.560
C, U-238
           ,NO,
                    2.694E+00,
                                  3.267E+00,
                                                 5.601E+00,,
                                                                  0.481
```

Analyst MV

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:07:05.12 TBE02 51-TP42214B HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:09.95

LIMS No., Customer Name, Client ID: L95403-6 SS ANCHOR QEA

Sample ID : 02L95403-6 Smple Date: 13-FEB-2022 13:37:00.

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Cts/Sec %Err Pk It Energy Area Bkqnd FWHM Channel %Eff Fit 0 74.83* 135 1788 0.90 134.52 8.13E+00 2.18E-03 57.3 1 2 0 0.79 8.44E+00 1.32E-02 77.17* 821 1377 139.23 8.5 3 5 87,18* 311 1193 0.95 159.38 9.45E+00 5.01E-03 20.4 3.50E+00 4 0 92.93* 387 1.37 170.95 9.81E+00 6.24E-03 21.4 1470 5 8.33E+00 5.77E-03 23.9 0 185.90* 358 1442 1.10 358.02 6 0 209.36 1023 1.03 405.22 7.66E+00 4.40E-03 22.0 273 '7 5 238.61* 1891 616 1.00 464.09 6.92E+00 3.05E-02 3.5 1.17E+00 8 5 241.71* 1.76 470.32 6.84E+00 9.24E-03 13.4 574 1004 1.15 9 0 269.95 201 751 6.25E+00 3.24E-03 25.5 527.14 10 295.08* 591 903 1.07 577.71 5.79E+00 9.52E-03 11.7 338.19* 1.22 664.47 5.15E+00 6.24E-03 14.2 11 0 388 659 12 0 351.88* 916 903 1.17 692.02 4.97E+00 1.47E-02 13 0 583.21* 491 442 1.45 1157.54 3.12E+00 7.91E-03 10.7 609.21* 758 432 1.43 1209.87 2.99E+00 1.22E-02 14 1.51 1447.45 15 0 727.26 276 2.51E+00 2.59E-03 22.1 161 1.62 1817.52 2.00E+00 6.54E-03 16 0 911.13* 406 166 9.4 1.88E+00 3.84E-03 13.2 17 968.88 238 201 1.34 1933.74 18 1120.28* 149 187 1.79 2238.50 1.63E+00 2.41E-03 22.4 0 2.10 2923.24 1.26E+00 1.67E-02 4.5 19 0 1460.44* 1037 128 93 1764.31* 115 2.13 3535.00 1.08E+00 1.85E-03 25.0 20 0

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	11				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1037	10.67*	1.263E+00	1.362E+01	1.362E+01	9.07
BI-214	609.31	758	46.30	2.990E+00	9.685E-01	9.685E-01	15.09
	1120.29	149	15.10*	1.627E+00	1.076E+00	1.076E+00	44.71
	1764.49	115	15.80	1.083E+00	1.186E+00	1.186E+00	50.01
RA-226	186.21	358	3.28*	8.335E+00	2.320E+00	2.320E+00	47.88
RA-228	93.35	387	3.50	9.813E+00	1.995E+00	2.016E+00	42.89
	969.11	238	16.60*	1.883E+00	1.349E+00	1.363E+00	26.42
TH-234	63.29		3.80*	6.106E+00	Li	ne Not Found	
						LOE402 240 of 20	20

L95403 219 of 332

						•	
U-235	92.60 143.76 163.35 185.71 205.31	387 358	5.41 10.50* 4.70 54.00 4.70	9.813E+00 9.647E+00 9.042E+00 8.335E+00 7.767E+00	Line 1.409E-01	1.291E+00 e Not Found e Not Found 1.409E-01 e Not Found	42.89 47.88
Nuclide Ty	rpe: NATURA	AL.					
	<u>r</u>				Uncorrected 1	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/q Dry	%Error
TL-208	583.17	491	30.25*	3.119E+00	9.211E-01	9.512E-01	21.45
BI-212	727.17	161	7.56*	2.514E+00	1.499E+00	1.548E+00	44.18
PB-212	238.63	1891	44.60*	6.915E+00	1.085E+00	1.121E+00	6.94
PB-214	295.21	591	19.20	5.795E+00	9.400E-01	9.401E-01	23.41
	351.92	916	37.20*	4.970E+00	8.763E-01	8.763E-01	16.53
TH-232	911.21	406	27.70*	2.004E+00	1.294E+00	1.294E+00	18.73
Nuclide Ty	pe: natura	al					
					Uncorrected 1		2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	1	pCi/g Dry	%Error
AC-228	835.50		1.75	2.188E+00			
	911.07	406	27.70*	2.004E+00	1.294E+00	1.308E+00	18.73

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 02L95403-6 Acquisition date: 17-MAR-2022 14:52:09

Total number of lines in spectrum 20
Number of unidentified lines 7
Number of lines tentatively identified by NID 13

65.00%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.362E+01	1.362E+01	0.124E+01	9.07	
BI-214	1600.00Y	1.00	1.076E+00	1.076E+00	0.481E+00	44.71	
RA-226	1600.00Y	1.00	2.320E+00	2.320E+00	1.111E+00	47.88	
RA-228	5.75Y	1.01	1.349E+00	1.363E+00	0.360E+00	26.42	
TH-234	4.47E+09Y	1.00	1.291E+00	1.291E+00	0.554E+00	42.89	K
U-235	7.04E+08Y	1.00	1.409E-01	1.409E-01	0.675E-01	47.88	K
•	Total Activity :		1.979E+01	1.981E+01			

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	9.211E-01	9.512E-01	2.040E-01	21.45
BI-212	1.91Y	1.03	1.499E+00	1.548E+00	0.684E+00	44.18
PB-212	1.91Y	1.03	1.085E+00	1.121E+00	0.078E+00	6.94
PB-214	1600.00Y	1.00	8.763E-01	8.763E-01	1.448E-01	16.53
TH-232	1.41E+10Y	1.00	1.294E+00	1.294E+00	0.242E+00	18.73
			ACCO AND SERVE SERVE SERVE SERVE SERVE SERVE			
	Total Activity :		5.676E+00	5.790E+00		

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.294E+00	1.308E+00	0.245E+00	18.73	
	Total Acti	vity:	1.294E+00	1.308E+00			

Grand Total Activity : 2.676E+01 2.691E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

It.	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	74.83	135	1788	0.90	134.52	132	6	2.18E-03	***	8.13E+00	
0	77.17	821	1377	0.79	139.23	137	6	1.32E-02	17.0	8.44E+00	
5	87.18	311	1193	0.95	159.38	150	14	5.01E-03	40.8	9.45E+00	
0	209.36	273	1023	1.03	405.22	401	9	4.40E-03	44.1	7.66E+00	
5	241.71	574	1004	1.76	470.32	458	18	9.24E-03	26.8	6.84E+00	
0	269.95	201	751	1.15	527.14	523	9	3.24E-03	51.0	6.25E+00	
0	338.19	388	659	1.22	664.47	661	9	6.24E-03	28.4	5.15E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 20
Number of unidentified lines 7
Number of lines tentatively identified by NID 13 65.00%

Nuclide Type :

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	Š
K-40	1.28E+09Y	1.00	1.362E+01	1.362E+01	0.124E+01	9.07	
BI-214	1600.00Y	1.00	9.885E-01	9.886E-01	1.361E-01	13.77	
RA-226	1600.00Y	1.00	2.320E+00	2.320E+00	1.111E+00	47.88	
RA-228	5.75Y	1.01	1.349E+00	1.363E+00	0.360E+00	26.42	
	Total Acti	vity:	1.828E+01	1.829E+01			

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	
TL-208	1.91Y	1.03	9.211E-01	9.512E-01	2.040E-01	21.45	
BI-212	1.91Y	1.03	1.499E+00	1.548E+00	0.684E+00	44.18	
PB-212	1.91Y	1.03	1.085E+00	1.121E+00	0.078E+00	6.94	
PB-214	1600.00Y	1.00	8.956E-01	8.956E-01	1.210E-01	13.51	
TH-232	1.41E+10Y	1.00	1.294E+00	1.294E+00	0.242E+00	18.73	
	Total Acti	vity:	5.695E+00	5.809E+00			

Nuclide Type : natural

		Wtd Mean	Wtd Mean		
		Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide AC-228	Hlife 5.75Y	 pCi/g Dry 1.294E+00	pCi/g Dry 1.308E+00	2-Sigma Error 0.245E+00	%Error Flags 18.73

Total Activity : 1.294E+00 1.308E+00

Grand Total Activity: 2.526E+01 2.541E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 BI-212 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.362E+01 9.512E-01 1.548E+00 1.121E+00 9.886E-01 8.956E-01 2.320E+00 1.308E+00 1.363E+00	1.235E+00 2.040E-01 6.840E-01 7.772E-02 1.361E-01 1.210E-01 1.111E+00 2.449E-01 3.602E-01 2.423E-01	6.431E-01 1.581E-01 6.866E-01 7.368E-02 4.472E-01 1.017E-01 8.559E-01 1.978E-01 3.263E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	21.176 6.017 2.255 15.210 2.210 8.809 2.711 6.611 4.178 6.610
	ntified Nuclides Key-Line				Act/MDA
Nuclide	Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	ACC/MDA

```
A,02L95403-6
                    ,03/18/2022 08:07,02/13/2022 13:37,
                                                               2.460E+01,L95403-6 SS AN
B,02L95403-6
                    , NORMK
                                            ,08/20/2021 05:25,02S25121819
C, K-40
                                                 6.431E-01,,
           , YES,
                    1.362E+01,
                                   1.235E+00,
                                                                 21.176
C, TL-208
           , YES,
                    9.512E-01,
                                   2.040E-01,
                                                 1.581E-01,,
                                                                  6.017
           ,YES,
C, BI-212
                    1.548E+00,
                                                 6.866E-01,,
                                   6.840E-01,
                                                                  2.255
C, PB-212
           , YES,
                    1.121E+00,
                                   7.772E-02,
                                                 7.368E-02,,
                                                                 15.210
C,BI-214
           , YES,
                    9.886E-01,
                                  1.361E-01,
                                                 4.472E-01,,
                                                                  2.210
C, PB-214
           , YES,
                    8.956E-01,
                                   1.210E-01,
                                                 1.017E-01,,
                                                                  8.809
C, RA-226
           , YES,
                    2.320E+00,
                                   1.111E+00,
                                                 8.559E-01,,
                                                                  2.711
C, AC-228
           , YES,
                    1.308E+00,
                                   2.449E-01,
                                                 1.978E-01,,
                                                                  6.611
C, RA-228
           , YES,
                    1.363E+00,
                                  3.602E-01,
                                                 3.263E-01,,
                                                                  4.178
C, TH-232
           , YES,
                    1.294E+00,
                                   2.423E-01,
                                                 1.957E-01,,
                                                                  6.610
C, CO-60
           ,NO,
                    1.763E-02,
                                  3.839E-02,
                                                 6.545E-02,,
                                                                  0.269
C, CS-137
                                                 6.431E-02,,
           ,NO,
                    4.681E-02,
                                  3.647E-02,
                                                                  0.728
C, LA-138
           ,NO,
                   -3.180E-03,
                                  5.866E-02,
                                                 9.605E-02,,
                                                                 -0.033
C, PA-234M
           ,NO,
                   -1.989E-01,
                                  4.702E+00,
                                                 6.806E+00,,
                                                                 -0.029
C, TH-234
           ,NO,
                   8.234E-01,
                                  8.431E-01,
                                                 1.250E+00,,
                                                                  0.659
           ,NO ,
                    6.684E-02,
C, U-235
                                  1.804E-01,
                                                 2.553E-01,,
                                                                  0.262
C, U-238
           ,NO,
                   -1.989E-01,
                                  4.702E+00,
                                                 6.806E+00,,
                                                                 -0.029
```

Analyst : W

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:14.39 TBE23 11410 HpGe ******* Aquisition Date/Time: 18-MAR-2022 11:13:49.13

LIMS No., Customer Name, Client ID: L95403-7 SS ANCHOR QEA

Sample ID : 23L95403-7 Smple Date: 13-FEB-2022 13:37:00.

Sample Type : SS Geometry : 23S25122820
Quantity : 2.74000E+01 g Dry BKGFILE : 23BG030422MT
Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 18:00:09.18
End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 18:00:00.00

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.42*	42	1950	0.94	93.11	4.06E+00	6.53E-042	216.6	
2	0	63.08*	277	1786	0.93	126.41	9.27E+00	4.28E-03	30.0	
3	3	74.76*	1237	1305	0.84	149.75	1.15E+01	1.91E-02	5.8	2.31E+00
4	3	77.07*	1909	1241	0.83	154.37	1.18E+01	2.95E-02	4.0	
5	3	84.08*	403	1332	1.24	168.38	1.25E+01	6.23E-03	17.6	4.83E+00
6	3	87.18*	933	1294	1.25	174.58	1.27E+01	1.44E-02	7.7	
7	3	89.81	667	1253	1.10	179.84	1.28E+01	1.03E-02	9.7	
8	3	92.68*	912	1382	1.26	185.58	1.29E+01	1.41E-02	9.3	
9	0	128.88	238	962	0.77	257.94	1.23E+01	3.68E-03	21.6	
10	0	185.83*	666	1666	1.14	371.79	1.01E+01	1.03E-02	14.0	
1,1	0	209.18	287	1050	1.07	418.46	9.31E+00	4.43E-03	20.4	
12	4	238.48*	3023	703	0.98	477.05	8.50E+00	4.67E-02	2.6	1.07E+00
13	4	241.36*	697	983	1.55	482.79	8.43E+00	1.08E-02	10.9	
14	0	270.16	314	823	1.23	540.39	7.78E+00	4.85E-03	17.4	
15	0	295.09*	771	885	0.93	590.24	7.29E+00	1.19E-02	8.3	
16	0	299.57*	96	732	0.96	599.19	7.21E+00	1.49E-03	58.4	
17	0	327.72	158	601	1.00	655.50	6.75E+00	2.44E-03	27.0	
18	0	338.27	740	841	1.05	676.59	6.59E+00	1.14E-02	8.4	
19	0	351.69*	1521	723	1.14	703.44	6.40E+00	2.35E-02	4.4	
20	0	462.66	221	392	1.24	925.39	5.17E+00	3.41E-03	16.9	
21	0	510.59*	315	850	2.12	1021.28	4.76E+00	4.86E-03	28.7	
22	0	582.91*	880	351	1.38	1165.98	4.25E+00	1.36E-02	6.0	
23	0	608.96*	1084	668	1.11	1218.10	4.08E+00	1.67E-02	6.2	
24	0	661.23	197	352	0.84	1322.72	3.79E+00	3.04E-03	18.6	
25	0	726.92*	209	319	1.56	1454.19	3.47E+00	3.23E-03	19.7	
26	0	859.91*	137	315	0.75	1720.44	2.94E+00	2.11E-03	30.8	
27	0	910.70*	681	218	1.70	1822.15	2.78E+00	1.05E-02	6.0	
28	0	968.60	447	187	1.45	1938.09	2.61E+00	6.90E-03	7.4	
29	0	1119.66*	240	304	1.88	2240.68	2.26E+00	3.70E-03	17.8	
30	0	1459.97*	1952	135	1.75	2922.75	1.78E+00	3.01E-02	2.8	
31	0	1763.28*	168	74	1.73	3531.11	1.57E+00	2.59E-03	14.2	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Ty	me:					75/91**	
	1				Uncorrected	Decav Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1952	10.67*	1.781E+00	1.564E+01	1.564E+01	5.59
CS-137	661.66	197	85.12*	3.789E+00	9.297E-02	9.317E-02	37.15
BI-214	609,31	1084	46.30	4.085E+00	8.727E-01	8.728E-01	12.44
	1120.29	240	15.10*	2.263E+00	1.069E+00	1.069E+00	35.60
	1764.49	168	15.80	1.574E+00	1.028E+00	1.028E+00	28.32
RA-226	186.21	666	3.28*	1.008E+01	3.068E+00	3.068E+00	28.07
RA-228	93.35	912	3.50	1.290E+01	3.077E+00	3.111E+00	18.52
	969.11	447	16.60*	2.613E+00	1.570E+00	1.587E+00	14.89
TH-234	63.29	277	3.80*	9.271E+00	1.198E+00	1.198E+00	60.06
	92.60	912	5.41	1.290E+01	1.990E+00	1.990E+00	18.52
Nuclide Ty	pe: NATUR	AL					
-	_				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	880	30.25*	4.247E+00	1.043E+00	1.078E+00	12.09
BI-212	727.17	209	7.56*	3.466E+00	1.217E+00	1.257E+00	39.44
PB-212	238.63	3023	44.60*	8.500E+00	1.214E+00	1.255E+00	5.30
PB-214	295.21	771	19.20	7.294E+00	8.384E-01	8.384E-01	16.56
	351.92	1521	37.20*	6.403E+00	9.717E-01	9.717E-01	8.83
TH-232	911.21	681	27.70*	2.779E+00	1.346E+00	1.346E+00	12.03
Nuclide Ty	pe: natur	al					
*	atus.				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
AC-228	835.50		1.75	3.027E+00	Li:	ne Not Found	
			27.70*		1.346E+00	1.361E+00	12.03

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID: 23L95403-7 Acquisition date: 18-MAR-2022 11:13:49

Total number of lines in spectrum 31
Number of unidentified lines 16

Number of lines tentatively identified by NID 15 48.39%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flag	S
K-40	1.28E+09Y	1.00	1.564E+01	1.564E+01	0.087E+01	5.59	
CS-137	30.07Y	1.00	9.297E-02	9.317E-02	3.461E-02	37.15	
BI-214	1600.00Y	1.00	1.069E+00	1.069E+00	0.381E+00	35.60	
RA-226	1600.00Y	1.00	3.068E+00	3.068E+00	0.861E+00	28.07	
RA-228	5.75Y	1.01	1.570E+00	1.587E+00	0.236E+00	14.89	
TH-234	4.47E+09Y	1.00	1.198E+00	1.198E+00	0.720E+00	60.06	
	Total Acti	.vity:	2.263E+01	2.265E+01			

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	1.043E+00	1.078E+00	0.130E+00	12.09	
BI-212	1.91Y	1.03	1.217E+00	1.257E+00	0.496E+00	39.44	
PB-212	1.91Y	1.03	1.214E+00	1.255E+00	0.066E+00	5.30	
PB-214	1600.00Y	1.00	9.717E-01	9.717E-01	0.858E-01	8.83	
TH-232	1.41E+10Y	1.00	1.346E+00	1.346E+00	0.162E+00	12.03	
	Total Acti	.vity :	5.791E+00	5.907E+00			

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.346E+00	1.361E+00	0.164E+00	12.03	
			MAN MAN AND MAN MAN MAN AND AND MAN				

Grand Total Activity : 2.977E+01 2.992E+01

Flags: "K" = Keyline not found "M" = Manually accepted

Total Activity : 1.346E+00 1.361E+00

"E" = Manually edited "A" = Nuclide specific abn. limit

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	46.42	42	1950	0.94	93.11	90	9	6.53E-04	* * * *	4.06E+00	
3	74.76	1237	1305	0.84	149.75	143	16	1.91E-02	11.6	1.15E+01	
3	77.07	1909	1241	0.83	154.37	143	16	2.95E-02	8.0	1.18E+01	
3	84.08	403	1332	1.24	168.38	165	27	6.23E-03	35.2	1.25E+01	
3	87.18	933	1294	1.25	174.58	165	27	1.44E-02	15.5	1.27E+01	
3	89.81	667	1253	1.10	179.84	165	27	1.03E-02	19.4	1.28E+01	
0	128.88	238	962	0.77	257.94	255	6	3.68E-03	43.2	1.23E+01	
0	209.18	287	1050	1.07	418.46	415	8	4.43E-03	40.9	9.31E+00	
4	241.36	697	983	1.55	482.79	470	22	1.08E-02	21.9	8.43E+00	
0	270.16	314	823	1.23	540.39	536	9	4.85E-03	34.7	7.78E+00	
0	299.57	96	732	0.96	599.19	596	8	1.49E-03	* * * *	7.21E+00	
0	327.72	158	601	1.00	655.50	652	7	2.44E-03	54.0	6.75E+00	
0	338.27	740	841	1.05	676.59	672	11	1.14E-02	16.9	6.59E+00	
0	462.66	221	392	1.24	925.39	921	8	3.41E-03	33.9	5.17E+00	
0	510.59	315	850	2.12	1021.28	1014	18	4.86E-03	57.4	4.76E+00	
0	859.91	137	315	0.75	1720.44	1714	14	2.11E-03	61.6	2.94E+00	

Page: 3

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total numb	per of	lines in sp	pectrum		31	
Number of	unide	ntified line	es		16	
Number of	lines	tentatively	/ identified	by NID	15	48.39%

Nuclide Type :

	- 1 E - ·		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.564E+01	1.564E+01	0.087E+01	5.59
CS-137	30.07Y	1.00	9.297E-02	9.317E-02	3.461E-02	37.15
BI-214	1600.00Y	1.00	9.035E-01	9.035E-01	0.983E-01	10.88
RA-226	1600.00Y	1.00	3.068E+00	3.068E+00	0.861E+00	28.07
RA-228	5.75Y	1.01	1.570E+00	1.587E+00	0.236E+00	14.89
TH-234	4.47E+09Y	1.00	1.198E+00	1.198E+00	0.720E+00	60.06
				Added based States admin Basel Passed Address Address States		
	Total Acti	.vity :	2.247E+01	2.249E+01		

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	1.043E+00	1.078E+00	0.130E+00	12.09	
BI-212	1.91Y	1.03	1.217E+00	1.257E+00	0.496E+00	39.44	
PB-212	1.91Y	1.03	1.214E+00	1.255E+00	0.066E+00	5.30	
PB-214	1600.00Y	1.00	9.349E-01	9.349E-01	0.730E-01	7.81	
TH-232	1.41E+10Y	1.00	1.346E+00	1.346E+00	0.162E+00	12.03	
	Total Acti	vity :	5.754E+00	5.871E+00			

Nuclide Type : natural

2.0.0	4 +		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide AC-228		-	pCi/g Dry 1.346E+00	1 , 3	2-Sigma Error 0.164E+00		Flags
					L954	403 228 of 332	

Total Activity: 1.346E+00 1.361E+00

Grand Total Activity : 2.957E+01 2.972E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 CS-137 TL-208 BI-212 PB-212 BI-214 PB-214	1.564E+01 9.317E-02 1.078E+00 1.257E+00 1.255E+00 9.035E-01 9.349E-01	8.734E-01 3.461E-02 1.303E-01 4.959E-01 6.645E-02 9.831E-02 7.297E-02	4.145E-01 4.288E-02 1.048E-01 4.693E-01 5.560E-02 2.985E-01 7.113E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	37.724 2.173 10.282 2.680 22.565 3.027 13.143
RA-226 AC-228 RA-228 TH-232 TH-234	3.068E+00 1.361E+00 1.587E+00 1.346E+00 1.198E+00	8.611E-01 1.637E-01 2.363E-01 1.619E-01 7.196E-01	6.701E-01 1.403E-01 2.383E-01 1.422E-01 7.470E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4.578 9.700 6.661 9.462 1.604

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 LA-138 PA-234M U-235 U-238	1.861E-02 1.714E-02 1.181E+00 -8.097E-03 1.181E+00	2.722E-02 3.851E-02 3.132E+00 1.265E-01 3.132E+00	4.885E-02 6.854E-02 4.945E+00 1.908E-01 4.945E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.381 0.250 0.239 -0.042 0.239

```
,03/19/2022 05:14,02/13/2022 13:37,
A,23L95403-7
                                                               2.740E+01,L95403-7 SS AN
                    , NORMK
                                            ,03/07/2022 09:36,23525122820
B, 23L95403-7
C, K-40
                    1.564E+01,
                                  8.734E-01,
                                                 4.145E-01,,
           , YES,
                                                                 37.724
           ,YES,
C, CS-137
                    9.317E-02,
                                                 4.288E-02,,
                                                                  2.173
                                  3.461E-02,
C, TL-208
           , YES,
                    1.078E+00,
                                  1.303E-01,
                                                 1.048E-01,,
                                                                 10.282
                                                 4.693E-01,,
C, BI-212
           , YES,
                    1.257E+00,
                                   4.959E-01,
                                                                  2.680
C, PB-212
           , YES,
                    1.255E+00,
                                   6.645E-02,
                                                 5.560E-02,,
                                                                 22.565
C, BI-214
           , YES,
                    9.035E-01,
                                   9.831E-02,
                                                 2.985E-01,,
                                                                  3.027
C, PB-214
           , YES,
                    9.349E-01,
                                  7.297E-02,
                                                 7.113E-02,,
                                                                 13.143
C, RA-226
           ,YES,
                    3.068E+00,
                                  8.611E-01,
                                                 6.701E-01,,
                                                                  4.578
C, AC-228
           , YES,
                    1.361E+00,
                                  1.637E-01,
                                                 1.403E-01,,
                                                                  9.700
C, RA-228
           , YES,
                    1.587E+00,
                                  2.363E-01,
                                                 2.383E-01,,
                                                                  6.661
           , YES,
                                                 1.422E-01,,
C, TH-232
                    1.346E+00,
                                  1.619E-01,
                                                                  9.462
C, TH-234
                    1.198E+00,
                                  7.196E-01,
                                                 7.470E-01,,
           , YES,
                                                                  1.604
C, CO-60
           ,NO,
                                  2.722E-02,
                                                 4.885E-02,,
                                                                  0.381
                    1.861E-02,
C, LA-138
           ,NO,
                    1.714E-02,
                                  3.851E-02,
                                                 6.854E-02,,
                                                                  0.250
C, PA-234M , NO ,
                    1.181E+00,
                                                 4.945E+00,,
                                  3.132E+00,
                                                                  0.239
                                                 1.908E-01,,
           NO ,
C, U-235
                   -8.097E-03,
                                  1.265E-01,
                                                                 -0.042
C, U-238
           ,NO,
                    1.181E+00,
                                  3.132E+00,
                                                 4.945E+00,,
                                                                  0.239
```

Analyse

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:26.27 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:13:49.45

LIMS No., Customer Name, Client ID: L95403-8 SS ANCHOR QEA

Sample ID : 06L95403-8 Smple Date: 13-FEB-2022 13:37:00.

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

		Ed.								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	3	74.92*	454	1273	1.06	150.31	1.68E+00	7.01E-03	15.2	5.11E+00
2	3	77.10	625	1236	1.00	154.66	1.84E+00	9.64E-03	9.9	
3	0	87.11	210	1268	0.87	174.65	2.53E+00	3.25E-03	27.7	
4	0	93.31*	187	2211	1.46	187.03	2.90E+00	2.89E-03	51.4	
5	0	186.07*	396	1545	1.27	372.19	4.02E+00	6.11E-03	21.0	
6	4	238.76*	2290	962	1.15	477.39	3.48E+00	3.53E-02	3.4	2.25E+00
7	4	241.80	604	1482	1.77	483.45	3.45E+00	9.32E-03	14.2	
8	0	295.34*	646	1167	1.10	590.32	2.95E+00	9.97E-03	11.9	
9	0	338.41	535	975	1.18	676.30	2.63E+00	8.26E-03	11.7	
10	0	351.99*	1086	990	1.15	703.42	2.54E+00	1.68E-02	7.1	
11	0	511.11*	352	908	2.31	1021.03	1.83E+00	5.44E-03	26.2	
12	0 -	583.21*	817	662	1.39	1164.93	1.63E+00	1.26E-02	8.4	
13	0	609.49*	765	672	1.31	1217.38	1.57E+00	1.18E-02	8.4	
14	0	661.98	162	347	0.98	1322.15	1.46E+00	2.50E-03	22.2	
15	0	727.60*	131	329	1.33	1453.11	1.35E+00	2.02E-03	28.3	
16	0	911.63*	388	457	1.51	1820.40	1.11E+00	5.99E-03	13.9	
17	0	969.98*	193	419	1.50	1936.85	1.06E+00	2.97E-03	24.6	
18	0	1120.59*	220	258	1.55	2237.40	9.34E-01	3.39E-03	18.9	
19	0	1461.35*	1298	127	1.90	2917.36	7.48E-01	2.00E-02	4.0	
20	0	1765.29*	120	89	2.15	3523.76	6.42E-01	1.86E-03	23.1	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

11001100	- <i>,</i> po.						
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1298	10.67*	7.481E-01	1.478E+01	1.478E+01	7.95
CS-137	661.66	162	85.12*	1.462E+00	1.183E-01	1.186E-01	44.30
BI-214	609.31	765	46.30	1.570E+00	9.557E-01	9.558E-01	16.82
	1120.29	220	15.10*	9.340E-01	1.417E+00	1.417E+00	37.74
	1764.49	120	15.80	6.424E-01	1.078E+00	1.078E+00	46.30
RA-226	186.21	396	3.28*	4.017E+00	2.731E+00	2.731E+00	41.91
RA-228	93.35	187	3.50	2.901E+00	1.676E+00	1.695E+00	102.80
	969.11	193	16.60*	1.055E+00	9.986E-01	1.010E+00	49.26
						L95403 231 of	332

TH-234 U-235	63.29 92.60 143.76 163.35 185.71 205.31	187 396	3.80* 5.41 10.50* 4.70 54.00 4.70	8.696E-01 2.901E+00 4.209E+00 4.183E+00 4.017E+00 3.827E+00	Line Not Found 1.084E+00	102.80
Nuclide Ty	pe: NATUR	AL				
-	-				Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
TL-208	583.17	817	30.25*	1.632E+00	1.504E+00 1.555E+00	16.75
BI-212	727.17	131	7.56*	1.348E+00	1.169E+00 1.209E+00	56.52
PB-212	238.63	2290	44.60*	3.477E+00	1.342E+00 1.387E+00	6.78
PB-214	295.21	646	19.20	2.951E+00	1.036E+00 1.036E+00	23.78
	351.92	1086	37.20*	2.542E+00	1.044E+00 1.044E+00	14.29
TH-232	911.21	388	27.70*	1.112E+00	1.144E+00 1.144E+00	27.74
Nuclide Ty	pe: natur	al				
					Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
AC-228	835.50		1.75	1.198E+00	Line Not Found	
	911.07	388	27.70*	1.112E+00	1.144E+00 1.157E+00	27.74

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 06L95403-8 Acquisition date: 18-MAR-2022 11:13:49

Total number of lines in spectrum 20
Number of unidentified lines 6
Number of lines tentatively identified by NID 14

70.00%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.478E+01	1.478E+01	0.117E+01	7.95	
CS-137	30.07Y	1.00	1.183E-01	1.186E-01	0.525E-01	44.30	
BI-214	1600.00Y	1.00	1.417E+00	1.417E+00	0.535E+00	37.74	
RA-226	1600.00Y	1.00	2.731E+00	2.731E+00	1.144E+00	41.91	
RA-228	5.75Y	1.01	9.986E-01	1.010E+00	0.497E+00	49.26	
TH-234	4.47E+09Y	1.00	1.084E+00	1.084E+00	1.115E+00	102.80	K
U-235	7.04E+08Y	1.00	1.659E-01	1.659E-01	0.695E-01	41.91	K
			PRINTED STATE TAXABLE SERVICE SERVICE SERVICE SERVICE				
			0 1000 01	0 1007 01			

Total Activity : 2.129E+01 2.130E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	1.504E+00	1.555E+00	0.260E+00	16.75
BI-212	1.91Y	1.03	1.169E+00	1.209E+00	0.683E+00	56.52
PB-212	1.91Y	1.03	1.342E+00	1.387E+00	0.094E+00	6.78
PB-214	1600.00Y	1.00	1.044E+00	1.044E+00	0.149E+00	14.29
TH-232	1.41E+10Y	1.00	1.144E+00	1.144E+00	0.317E+00	27.74
	Total Acti	vity:	6.204E+00	6.338E+00		

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
AC-228	5.75Y	1.01	1.144E+00	1.157E+00	0.321E+00	27.74

Total Activity : 1.144E+00 1.157E+00

Grand Total Activity: 2.864E+01 2.880E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3
Sample ID: 06L95403-8 Acquisition date: 18-MAR-2022 11:13:49

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
3	74.92	454	1273	1.06	150.31	143	16	7.01E-03	30.4	1.68E+00	
3	77.10	625	1236	1.00	154.66	143	16	9.64E-03	19.7	1.84E+00	
0	87.11	210	1268	0.87	174.65	173	6	3.25E-03	55.4	2.53E+00	
4	241.80	604	1482	1.77	483.45	470	19	9.32E-03	28.4	3.45E+00	
0	338.41	535	975	1.18	676.30	672	10	8.26E-03	23.4	2.63E+00	
0	511.11	352	908	2.31	1021.03	1013	17	5.44E-03	52.4	1.83E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 20
Number of unidentified lines 6
Number of lines tentatively identified by NID 14 70.00%

Nuclide Type :

		Wtd Mean	Wtd Mean			
		Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
1.28E+09Y	1.00	1.478E+01	1.478E+01	0.117E+01	7.95	
30.07Y	1.00	1.183E-01	1.186E-01	0.525E-01	44.30	
1600.00Y	1.00	1.001E+00	1.001E+00	0.147E+00	14.69	
1600.00Y	1.00	2.731E+00	2.731E+00	1.144E+00	41.91	
5.75Y	1.01	9.986E-01	1.010E+00	0.497E+00	49.26	
Total Acti	vity:	1.962E+01	1.964E+01			
	1.28E+09Y 30.07Y 1600.00Y 1600.00Y 5.75Y	1.28E+09Y 1.00 30.07Y 1.00 1600.00Y 1.00 1600.00Y 1.00 5.75Y 1.01	Uncorrected Hlife Decay pCi/g Dry 1.28E+09Y 1.00 1.478E+01 30.07Y 1.00 1.183E-01 1600.00Y 1.00 1.001E+00 1600.00Y 1.00 2.731E+00	Uncorrected Decay Corr Hlife Decay pCi/g Dry pCi/g Dry 1.28E+09Y 1.00 1.478E+01 1.478E+01 30.07Y 1.00 1.183E-01 1.186E-01 1600.00Y 1.00 1.001E+00 1.001E+00 1600.00Y 1.00 2.731E+00 2.731E+00 5.75Y 1.01 9.986E-01 1.010E+00	Uncorrected Decay Corr Decay Corr Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error 1.28E+09Y 1.00 1.478E+01 1.478E+01 0.117E+01 30.07Y 1.00 1.183E-01 1.186E-01 0.525E-01 1600.00Y 1.00 1.001E+00 1.001E+00 0.147E+00 1600.00Y 1.00 2.731E+00 2.731E+00 1.144E+00 5.75Y 1.01 9.986E-01 1.010E+00 0.497E+00	Uncorrected Decay Corr Decay Corr 2-Sigma Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error 1.28E+09Y 1.00 1.478E+01 1.478E+01 0.117E+01 7.95 30.07Y 1.00 1.183E-01 1.186E-01 0.525E-01 44.30 1600.00Y 1.00 1.001E+00 1.001E+00 0.147E+00 14.69 1600.00Y 1.00 2.731E+00 2.731E+00 1.144E+00 41.91 5.75Y 1.01 9.986E-01 1.010E+00 0.497E+00 49.26

Nuclide Type : NATURAL

-120	* ** ******				
		Wtd Mean	Wtd Mean		
		Uncorrected	Decay Corr	Decay Corr	2-Sigma
Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
1.91Y	1.03	1.504E+00	1.555E+00	0.260E+00	16.75
1.91Y	1.03	1.169E+00	1.209E+00	0.683E+00	56.52
1.91Y	1.03	1.342E+00	1.387E+00	0.094E+00	6.78
1600.00Y	1.00	1.042E+00	1.042E+00	0.128E+00	12.25
1.41E+10Y	1.00	1.144E+00	1.144E+00	0.317E+00	27.74
Total Acti	vity:	6.202E+00	6.336E+00		
	Hlife 1.91Y 1.91Y 1.91Y 1600.00Y 1.41E+10Y	Hlife Decay 1.91Y 1.03 1.91Y 1.03 1.91Y 1.03 1600.00Y 1.00 1.41E+10Y 1.00	Wtd Mean Uncorrected Hlife Decay pCi/g Dry 1.91Y 1.03 1.504E+00 1.91Y 1.03 1.169E+00 1.91Y 1.03 1.342E+00 1600.00Y 1.00 1.042E+00	Wtd Mean Wtd Mean Wtd Mean Hlife Decay pCi/g Dry pCi/g Dry 1.91Y 1.03 1.504E+00 1.555E+00 1.91Y 1.03 1.169E+00 1.209E+00 1.91Y 1.03 1.342E+00 1.387E+00 1600.00Y 1.00 1.042E+00 1.144E+00 1.41E+10Y 1.00 1.144E+00 1.144E+00	Wtd Mean Wtd Mean Wtd Mean Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error 1.91Y 1.03 1.504E+00 1.555E+00 0.260E+00 1.91Y 1.03 1.169E+00 1.209E+00 0.683E+00 1.91Y 1.03 1.342E+00 1.387E+00 0.094E+00 1600.00Y 1.00 1.042E+00 1.144E+00 0.317E+00 1.41E+10Y 1.00 1.144E+00 1.144E+00 0.317E+00

Nuclide Type : natural

	7.1		Wtd Mean Decav Corr	Decay Corr	2-Sigma	
Nuclide AC-228		4	pCi/g Dry	2-Sigma Error 0.321E+00	%Error	

Total Activity : 1.144E+00 1.157E+00

Grand Total Activity : 2.697E+01 2.713E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40	1.478E+01	1.174E+00	6.392E-01	0.000E+00	23.114
CS-137	1.186E-01	5.253E-02	6.648E-02	0.000E+00	1.784
TL-208	1.555E+00	2.604E-01	1.831E-01	0.000E+00	8.494
BI-212	1.209E+00	6.830E-01	8.377E-01	0.000E+00	1,443
PB-212	1.387E+00	9.398E-02	8.960E-02	0.000E+00	15.480
BI-214	1.001E+00	1.471E-01	4.066E-01	0.000E+00	2.463
PB-214	1.042E+00	1.276E-01	1.197E-01	0.000E+00	8.704
RA-226	2.731E+00	1.144E+00	1.113E+00	0.000E+00	2.454
AC-228	1.157E+00	3.208E-01	2.349E-01	0.000E+00	4.925
RA-228	1.010E+00	4.974E-01	4.351E-01	0.000E+00	2.321
TH-232	1.144E+00	3.173E-01	2.324E-01	0.000E+00	4.924
Non-Id	dentified Nuclides				
	Key-Line				
	Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/g Dry)Ided		(pCi/g Dry)		,
CO-60	4.897E-02	4.137E-02	7.332E-02	0.000E+00	0.668
LA-138	2.065E-03	5.691E-02	9.494E-02	0.000E+00	0.022
PA-234M	2.378E+00	4.473E+00	7.478E+00	0.000E+00	0.318
TH-234	-9.429E-02	2.785E+00	4.609E+00	0.000E+00	-0.020
U-235	1.180E-01	2.077E-01	3.376E-01	0.000E+00	0.349
U-238	2.378E+00	4.473E+00	7.478E+00	0.000E+00	0.318

```
A,06L95403-8
                    ,03/19/2022 05:14,02/13/2022 13:37,
                                                              4.590E+01,L95403-8 SS AN
B,06L95403-8
                    , NORMK
                                            ,10/29/2021 09:14,06S50031621
C, K-40
                    1.478E+01,
                                  1.174E+00,
           , YES,
                                                 6.392E-01,
                                                                 23.114
           , YES,
C, CS-137
                    1.186E-01,
                                  5.253E-02,
                                                 6.648E-02,,
                                                                  1.784
C, TL-208
           , YES,
                    1.555E+00,
                                  2.604E-01,
                                                 1.831E-01,,
                                                                  8.494
C, BI-212
           , YES,
                    1.209E+00,
                                  6.830E-01,
                                                 8.377E-01,,
                                                                  1.443
C, PB-212
           , YES,
                                                 8.960E-02,,
                    1.387E+00,
                                  9.398E-02,
                                                                 15.480
C, BI-214
                                  1.471E-01,
           , YES,
                    1.001E+00,
                                                 4.066E-01,,
                                                                  2.463
C, PB-214
           , YES,
                    1.042E+00,
                                  1.276E-01,
                                                 1.197E-01,,
                                                                  8.704
C, RA-226
           , YES,
                    2.731E+00,
                                  1.144E+00,
                                                 1.113E+00,,
                                                                  2.454
                                                 2.349E-01,,
C, AC-228
           , YES,
                    1.157E+00,
                                  3.208E-01,
                                                                  4.925
C, RA-228
           , YES,
                    1.010E+00,
                                  4.974E-01,
                                                 4.351E-01,,
                                                                  2.321
C, TH-232
           , YES,
                    1.144E+00,
                                  3.173E-01,
                                                 2.324E-01,,
                                                                  4.924
C, CO-60
           , NO ,
                    4.897E-02,
                                  4.137E-02,
                                                 7.332E-02,
                                                                  0.668
C, LA-138
           ,NO,
                    2.065E-03,
                                  5.691E-02,
                                                 9.494E-02,,
                                                                  0.022
           ,NO,
C, PA-234M
                                  4.473E+00,
                                                 7.478E+00,,
                    2.378E+00,
                                                                  0.318
C, TH-234
           ,NO,
                   -9.429E-02,
                                  2.785E+00,
                                                 4.609E+00,,
                                                                 -0.020
           NO,
                                                 3.376E-01,,
C, U-235
                    1.180E-01,
                                  2.077E-01,
                                                                  0.349
C, U-238
           ,NO,
                    2.378E+00,
                                  4.473E+00,
                                                 7.478E+00,,
                                                                  0.318
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:44.84 TBE07 31-TP10768B HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:13:49.76 _______

LIMS No., Customer Name, Client ID: L95403-9 SS ANCHOR QEA

Sample ID : 07L95403-9 Smple Date: 13-FEB-2022 13:37:00.

Sample Type : SS Geometry : 07S25121819 Quantity : 3.11000E+01 g Dry BKGFILE : 07BG030422MT Start Channel: 80 Real Time : 0 18:00:26.81 Energy Tol : 2.00000 End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 18:00:00.00

MDA Multiple : 4.6600 Library Used: NORMK

Peak Evaluation - Identified and Unidentified

		•								
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	93.05*	320	2700	1.89	185.91	7.28E+00	4.93E-03	34.7	2.51E+00
2	1	185.76*	574	1962	2.10	371.39	8.06E+00	8.86E-03	17.5	3.28E+00
3	3	238.53*	2464	1502	1.83	476.97	6.95E+00	3.80E-02	4.0	2.47E+00
4	3	241.55	622	1583	1.99	483.02	6.89E+00	9.60E-03	15.1	
5	1	295.09*	750	1487	1.89	590.13	5.96E+00	1.16E-02	11.8	7.19E-01
6	1	338.11*	445	1355	1.82	676.19	5.37E+00	6.87E-03	19.4	3.46E+00
7	1	351.80*	1276	1377	2.00	703.58	5.20E+00	1.97E-02	7.5	1.44E+00
8	1	510.78*	301	1349	3.28	1021.59	3.82E+00	4.64E-03	40.0	2.05E+00
. 9	1	582.94*	749	778	2.54	1165.93	3.41E+00	1.16E-02	9:8	3.71E+00
10	1	609.11*	931	1021	2.34	1218.29	3.28E+00	1.44E-02	9.7	3.12E+00
11	1	910.55*	493	525	2.24	1821.20	2.27E+00	7.60E-03	12.9	8.50E-01
12	1	968.71*	249	446	2.38	1937.52	2.15E+00	3.84E-03	21.7	1.34E+00
13	1	1459.84*	1589	307	3.10	2919.65	1.49E+00	2.45E-02	4.5	2.60E+00
14	1	1763.15*	198	98	3.39	3526.08	1.29E+00	3.06E-03	18.6	2.13E+00

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Τ. 1	T+ > ~	. 7	4	70	m	
iΝ	HIC	. 1	1	$u \in$	Type:	

Nucliue	TAbe:						
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1589	10.67*	1.486E+00	1.344E+01	1.344E+01	9.02
BI-214	609.31	931	46.30	3.281E+00	8.219E-01	8.220E-01	19.34
	1120.29		15.10*	1.875E+00	Li	ne Not Found	PRIS THE STREET NAME AND
	1764.49	198	15.80	1.294E+00	1.299E+00	1.299E+00	37.24
RA-226	186.21	574	3.28*	8.057E+00	2.913E+00	2.913E+00	34.98
RA-228	93.35	320	3.50	7.276E+00	1.684E+00	1.702E+00	69.46
	969.11	249	16.60*	2.147E+00	9.357E-01	9.460E-01	43.45

Nuclide Type: NATURAL

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	749	30.25*	3.410E+00	9.733E-01	1.006E+00	19.61
PB-212	238.63	2464	44.60*	6.948E+00	1.066E+00	1.102E+00	7.95
						L95403 237 of 3	32

PB-214	295.21	750	19.20	5.962E+00	8.789E-01	8.789E-01	23.68
	351.92	1276	37.20*	5.201E+00	8.845E-01	8.845E-01	15.08
TH-232	911.21	493	27.70*	2.274E+00	1.049E+00	1.049E+00	25.77

Nuclide Type: natural

						Decay Corr	
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
AC-228	835.50		1.75	2.464E+00	Lir	ne Not Found	
	911.07	493	27.70*	2.274E+00	1.049E+00	1.060E+00	25.77

Flag: "*" = Keyline

Summary of Nuclide Activity Acquisition date : 18-MAR-2022 11:13:49 Sample ID : 07L95403-9

Total number of lines in spectrum 14 Number of unidentified lines 3

Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error l	Flags
K-40	1.28E+09Y	1.00	1.344E+01	1.344E+01	0.121E+01	9.02	
BI-214	1600.00Y	1.00	8.219E-01	8.220E-01	1.589E-01	19.34 I	K
RA-226	1600.00Y	1.00	2.913E+00	2.913E+00	1.019E+00	34.98	
RA-228	5.75Y	1.01	9.357E-01	9.460E-01	4.111E-01	43.45	
	makal makindan		1 01171.01	1 0120.01			

Total Activity : 1.811E+01 1.813E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	9.733E-01	1.006E+00	0.197E+00	19.61
PB-212	1.91Y	1.03	1.066E+00	1.102E+00	0.088E+00	7.95
PB-214	1600.00Y	1.00	8.845E-01	8.845E-01	1.334E-01	15.08
TH-232	1.41E+10Y	1.00	1.049E+00	1.049E+00	0.270E+00	25.77
	m - t - 1		2 0727 00	4 04177.00		

Total Activity: 3.973E+00 4.041E+00

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
AC-228	5.75Y	1.01	1.049E+00	1.060E+00	0.273E+00	25.77

Total Activity : 1.049E+00 1.060E+00

Grand Total Activity : 2.314E+01 2.323E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Page: 3
Sample ID: 07L95403-9 Acquisition date: 18-MAR-2022 11:13:49

It.	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
	241.55 338.11							9.60E-03 6.87E-03			
1	510.78	301	1349	3.28	1021.59	1011	23	4.64E-03	79.9	3.82E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14
Number of unidentified lines 3
Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

	7 1		Wtd Mean	Wtd Mean	Doggar Cores	2. Ciama
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.344E+01	1.344E+01	0.121E+01	9.02
BI-214	1600.00Y	1.00	8.684E-01	8.684E-01	1.510E-01	17.39
RA-226	1600.00Y	1.00	2.913E+00	2.913E+00	1.019E+00	34.98
RA-228	5.75Y	1.01	1.016E+00	1.028E+00	0.388E+00	37.79
	Total Acti	.vity :	1.824E+01	1.825E+01		

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	9.733E-01	1.006E+00	0.197E+00	19.61	
PB-212	1.91Y	1.03	1.066E+00	1.102E+00	0.088E+00	7.95	
PB-214	1600.00Y	1.00	8.829E-01	8.829E-01	1.123E-01	12.72	
TH-232	1.41E+10Y	1.00	1.049E+00	1.049E+00	0.270E+00	25.77	
	Total Acti	.vity :	3.971E+00	4.040E+00			

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.049E+00	1.060E+00	0.273E+00	25.77	

Total Activity: 1.049E+00 1.060E+00

Grand Total Activity : 2.326E+01 2.335E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.344E+01 1.006E+00 1.102E+00 8.684E-01 8.829E-01 2.913E+00 1.060E+00 1.028E+00	1.212E+00 1.973E-01 8.760E-02 1.510E-01 1.123E-01 1.019E+00 2.732E-01 3.883E-01 2.702E-01	5.273E-01 1.581E-01 7.159E-02 5.283E-01 9.748E-02 8.913E-01 1.865E-01 3.753E-01 1.845E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	25.496 6.363 15.394 1.644 9.057 3.268 5.685 2.738 5.684
Non-Id	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 CS-137 LA-138 BI-212 PA-234M TH-234 U-235 U-238	1.882E-02 4.678E-02 1.692E-02 1.094E+00 3.917E+00 5.189E-01 -1.392E-01 3.917E+00	3.556E-02 3.557E-02 5.040E-02 4.479E-01 3.722E+00 1.512E+00 1.947E-01 3.722E+00	5.902E-02 6.081E-02 8.515E-02 7.845E-01 6.399E+00 2.242E+00 2.834E-01 6.399E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.319 0.769 0.199 1.395 0.612 0.231 -0.491 0.612

```
A,07L95403-9
                    ,03/19/2022 05:14,02/13/2022 13:37,
                                                              3.110E+01,L95403-9 SS AN
B,07L95403-9
                    , NORMK
                                           ,08/12/2021 14:20,07S25121819
C, K-40
           , YES,
                    1.344E+01,
                                  1.212E+00,
                                                 5.273E-01,,
                                                                 25.496
           , YES,
C, TL-208
                    1.006E+00,
                                                 1.581E-01,,
                                                                  6.363
                                  1.973E-01,
C, PB-212
           , YES,
                    1.102E+00,
                                  8.760E-02,
                                                 7.159E-02,,
                                                                 15.394
           , YES,
                                  1.510E-01,
                                                 5.283E-01,,
C, BI-214
                    8.684E-01,
                                                                  1.644
C, PB-214
           , YES,
                    8.829E-01,
                                  1.123E-01,
                                                 9.748E-02,,
                                                                  9.057
C, RA-226
                    2.913E+00,
                                                 8.913E-01,,
           , YES,
                                  1.019E+00,
                                                                  3.268
C, AC-228
           , YES,
                    1.060E+00,
                                  2.732E-01,
                                                 1.865E-01,,
                                                                  5.685
C, RA-228
           , YES,
                    1.028E+00,
                                  3.883E-01,
                                                 3.753E-01,,
                                                                  2.738
C, TH-232
           , YES,
                    1.049E+00,
                                  2.702E-01,
                                                 1.845E-01,
                                                                  5.684
C, CO-60
           ,NO,
                    1.882E-02,
                                  3.556E-02,
                                                 5.902E-02,,
                                                                  0.319
                                                 6.081E-02,,
C, CS-137
           ,NO,
                    4.678E-02,
                                  3.557E-02,
                                                                  0.769
C, LA-138
           ,NO,
                    1.692E-02,
                                  5.040E-02,
                                                 8.515E-02,,
                                                                  0.199
C, BI-212
           ,NO ,
                    1.094E+00,
                                  4.479E-01,
                                                 7.845E-01,,
                                                                  1.395
C, PA-234M
          , NO
                    3.917E+00,
                                  3.722E+00,
                                                 6.399E+00,,
                                                                  0.612
C, TH-234
           ,NO,
                                                 2.242E+00,,
                    5.189E-01,
                                  1.512E+00,
                                                                  0.231
           ,NO,
C, U-235
                   -1.392E-01,
                                  1.947E-01,
                                                 2.834E-01,,
                                                                 -0.491
C, U-238
           ,NO,
                    3.917E+00,
                                  3.722E+00,
                                                 6.399E+00,,
                                                                  0.612
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:07:13.85 TBE07 31-TP10768B HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:10.17

LIMS No., Customer Name, Client ID: L95403-10 SS ANCHOR QEA

Sample ID : 07L95403-10 Smple Date: 13-FEB-2022 13:37:00.

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	2	74.94*	334	1726	1.41	149.69	5.05E+00	5.37E-03	27.3	1.07E+01
2	2	77.17*	742	1857	1.42	154.15	5.39E+00	1.20E-02	12.5	
3	1	185.81*	442	2050	2.10	371.49	8.06E+00	7.12E-03	24.1	9.47E-01
4	1	238.51*	1395	2061	1.44	476.92	6.95E+00	2.25E-02	7.3	1.72E+00
5	1	295.15*	575	1221	1.73	590.24	5.96E+00	9.27E-03	13.7	2.15E+00
6	1	338.09*	381	1275	1.99	676.14	5.37E+00	6.13E-03	21.8	1.09E+00
7	1	351.74*	1141	1486	1.94	703.46	5.20E+00	1.84E-02	9.0	2.41E+00
- 8	1	582.82*	638	736	2.50	1165.69	3.41E+00	1.03E-02	11.3	2.38E+00
9	. 1	608.94*	958	693	2.14	1217.95	3.28E+00	1.54E-02	7.5	1.36E+00
10	1	910.69*	420	430	2.11	1821.49	2.27E+00	6.76E-03	12.9	9.00E-01
11	1	968.53*	183	532	2.17	1937.17	2.15E+00	2.95E-03	32.4	1.02E+00
12	1	1459.91*	1084	347	2.81	2919.80	1.49E+00	1.75E-02	6.0	1.68E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma	
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error	
K-40	1460.81	1084	10.67*	1.486E+00	1.201E+01	1.201E+01	12.05	
RA-226	186.21	442	3.28*	8.056E+00	2.935E+00	2.935E+00	48.13	
RA-228	93.35		3.50	7.303E+00	Li	ne Not Found		
	969.11	183	16.60*	2.147E+00	9.021E-01	9.118E-01	64.89	

Nuclide Type: NATURAL

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	638	30.25*	3.410E+00	1.085E+00	1.121E+00	22.56
PB-212	238.63	1395	44.60*	6.949E+00	7.900E-01	8.159E-01	14.65
PB-214	295.21	575	19.20	5.962E+00	8.826E-01	8.827E-01	27.41
	351.92	1141	37.20*	5.202E+00	1.035E+00	1.035E+00	18.09
TH-232	911.21	420	27.70*	2.274E+00	1.169E+00	1.169E+00	25.71

Nuclide Type: natural

					uncorrected	Decay Corr	z-sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
AC-228	835.50		1.75	2.464E+00	Liı	ne Not Found	
	911.07	420	27.70*	2.274E+00	1.169E+00	1.182E+00	25.71

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 07L95403-10 Acquisition date: 17-MAR-2022 14:52:10

Total number of lines in spectrum 12
Number of unidentified lines 3

Number of lines tentatively identified by NID 9 75.00%

Nuclide Type :

Uncorrected Decay Corr 2-Sigma Decay Corr Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.201E+01 0.145E+01 12.05 1.201E+01 RA-226 1600.00Y 1.00 2.935E+00 2.935E+00 1.413E+00 48.13 RA-228 5.75Y 1.01 9.021E-01 9.118E-01 5.917E-01 64.89 _ _ _ _ _ _ _ _ _____

Total Activity: 1.584E+01 1.585E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/q Dry pCi/q Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 1.085E+00 1.121E+00 0.253E+00 22.56 PB-212 1.03 7.900E-01 14.65 1.91Y 8.159E-01 1.195E-01 1.035E+00 0.187E+00 PB-214 1600.00Y 1.00 1.035E+00 18.09 TH-232 1.41E+10Y 1.00 1.169E+00 0.301E+00 25.71 1.169E+00 _____ 4.141E+00 Total Activity: 4.080E+00

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Siqma Nuclide Decay pCi/q Dry pCi/q Dry 2-Sigma Error %Error Flags Hlife AC-228 0.304E+00 25.71 5.75Y 1.01 1.169E+00 1.182E+00 ---------

Total Activity: 1.169E+00 1.182E+00

Grand Total Activity : 2.109E+01 2.118E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3
Sample ID: 07L95403-10 Acquisition date: 17-MAR-2022 14:52:10

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
2	74.94	334	1726	1.41	149.69	142	22	5.37E-03	54.5	5.05E+00	
2	77.17	742	1857	1.42	154.15	142	22	1.20E-02	25.0	5.39E+00	
1	338.09	381	1275	1.99	676.14	669	14	6.13E-03	43.6	5.37E+00	
1	608.94	958	693	2.14	1217.95	1211	14	1.54E-02	15.0	3.28E+00	T

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 12
Number of unidentified lines 3
Number of lines tentatively identified by NID 9 75.00%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected		Decay Corr	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.201E+01	1.201E+01	0.145E+01	12.05
RA-226	1600.00Y	1.00	2.935E+00	2.935E+00	1.413E+00	48.13
RA-228	5.75Y	1.01	9.021E-01	9.118E-01	5.917E-01	64.89
	Total Acti	.vity :	1.584E+01	1.585E+01		

Nuclide Type : NATURAL

			wta Mean	wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flag	js
TL-208	1.91Y	1.03	1.085E+00	1.121E+00	0.253E+00	22.56	
PB-212	1.91Y	1.03	7.900E-01	8.159E-01	1.195E-01	14.65	
PB-214	1600.00Y	1.00	9.780E-01	9.780E-01	1.481E-01	15.14	
TH-232	1.41E+10Y	1.00	1.169E+00	1.169E+00	0.301E+00	25.71	
				AND AND THAT AND MAD AND THE WAY THE			
	Total Acti	vity:	4.023E+00	4.084E+00			

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	;
AC-228	5.75Y	1.01	1.169E+00	1.182E+00	0.304E+00	25.71	
	Total Acti	.vity :	1.169E+00	1.182E+00			

Grand Total Activity: 2.104E+01 2.112E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 PB-212 PB-214 RA-226 AC-228 RA-228 TH-232	1.201E+01 1.121E+00 8.159E-01 9.780E-01 2.935E+00 1.182E+00 9.118E-01 1.169E+00	1.446E+00 2.528E-01 1.195E-01 1.481E-01 1.413E+00 3.039E-01 5.917E-01 3.007E-01	6.847E-01 1.909E-01 1.214E-01 1.225E-01 1.110E+00 2.316E-01 4.541E-01 2.291E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	17.536 5.870 6.722 7.986 2.644 5.105 2.008 5.104
Non-Ide	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 CS-137 LA-138 BI-212 BI-214 PA-234M TH-234 U-235 U-238	-3.353E-02 3.526E-02 1.229E-02 1.268E+00 1.221E+00 6.341E+00 -4.950E-01 -1.388E-03	4.306E-02 4.476E-02 6.669E-02 5.593E-01 4.013E-01 4.587E+00 1.878E+00 2.391E-01 4.587E+00	6.657E-02 7.550E-02 1.118E-01 9.779E-01 6.781E-01 7.997E+00 2.749E+00 3.511E-01 7.997E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.504 0.467 0.110 1.297 1.800 0.793 -0.180 -0.004 0.793

```
A,07L95403-10
                    ,03/18/2022 08:07,02/13/2022 13:37,
                                                               2.480E+01,L95403-10 SS A
B,07L95403-10
                    , NORMK
                                            ,08/12/2021 14:20,07S25121819
C, K-40
           , YES,
                    1.201E+01,
                                   1.446E+00,
                                                 6.847E-01,,
                                                                 17.536
           , YES,
C, TL-208
                    1.121E+00,
                                                 1.909E-01,,
                                                                  5.870
                                   2.528E-01,
C, PB-212
           , YES,
                    8.159E-01,
                                   1.195E-01,
                                                 1.214E-01,,
                                                                  6.722
C, PB-214
           , YES,
                    9.780E-01,
                                   1.481E-01,
                                                 1.225E-01,,
                                                                  7.986
C, RA-226
           , YES,
                    2.935E+00,
                                   1.413E+00,
                                                 1.110E+00,,
                                                                  2.644
C, AC-228
           , YES,
                    1.182E+00,
                                   3.039E-01,
                                                 2.316E-01,,
                                                                   5.105
C, RA-228
           , YES,
                    9.118E-01,
                                   5.917E-01,
                                                 4.541E-01,,
                                                                  2.008
C, TH-232
           , YES,
                    1.169E+00,
                                   3.007E-01,
                                                 2.291E-01,,
                                                                  5.104
           ,NO,
C, CO-60
                   -3.353E-02,
                                   4.306E-02,
                                                 6.657E-02,,
                                                                  -0.504
C, CS-137
           ,NO,
                    3.526E-02,
                                   4.476E-02,
                                                 7.550E-02,,
                                                                  0.467
C, LA-138
           , NO
                                                 1.118E-01,,
                    1.229E-02,
                                   6.669E-02,
                                                                  0.110
           , NO ,
C, BI-212
                    1.268E+00,
                                   5.593E-01,
                                                 9.779E-01,,
                                                                  1.297
C, BI-214
           ,NO,
                    1.221E+00,
                                   4.013E-01,
                                                 6.781E-01,,
                                                                  1.800
C, PA-234M
           ,NO,
                    6.341E+00,
                                   4.587E+00,
                                                 7.997E+00,,
                                                                  0.793
C, TH-234
           ,NO,
                   -4.950E-01,
                                   1.878E+00,
                                                 2.749E+00,,
                                                                  -0.180
           ,NO,
C, U-235
                   -1.388E-03,
                                                 3.511E-01,,
                                   2.391E-01,
                                                                 -0.004
C, U-238
           ,NO,
                    6.341E+00,
                                   4.587E+00,
                                                 7.997E+00,,
                                                                  0.793
```

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:07:27.64 TBE14 54-TP42603C HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:10.82

LIMS No., Customer Name, Client ID: L95403-11 SS ANCHOR QEA

Sample ID : 14L95403-11 Smple Date: 13-FEB-2022 12:56:00.

: SS Sample Type

Geometry : 14S25121719 Quantity : 2.55000E+01 g Dry BKGFILE : 14BG030422MT

Start Channel: 80 Energy Tol : 2.00000 Real Time : 0 17:15:04.54 End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 17:14:52.79

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	74.90*	369	1557	0.74	146.95	7.22E+00	5.94E-03	19.4	1.06E+01
2	1	77.18	911	1328	0.84	151.52	7.57E+00	1.47E-02	7.1	1.49E+01
. 3	4	84.52*	33	1210	1.25	166.21	8.51E+00	5.29E-042	202.9	1.98E+00
4	4	87.19*	310	913	0.89	171.55	8.78E+00	4.99E-03	18.3	
5	1	92.95*	627	1687	1.77	183.08	9.27E+00	1.01E-02	14.7	4.47E+00
6	1	185.84*	377	1366	1.15	369.07	8.55E+00			2.73E+00
7	7	238.61*	1770	595	1.05	474.74	7.10E+00	2.85E-02	3.7	2.87E+00
8	7	241.66	607	1004	1.90	480.83	7.02E+00	9.78E-03	12.4	
9	1	295.19*	574	856	0.98	588.03	5.91E+00	9.25E-03	11.7	1.37E+00
10	1	338.26	387	581	1.16	674.27	5.22E+00	6.23E-03	12.3	1.74E+00
11	1	351.98*	1002	667	1.17	701.73	5.03E+00	1.61E-02	6.3	1.20E+00
12	1	510.90*	81	736	2.47	1019.98	3.51E+00	1.31E-03	101.9	1.46E+00
13	1	583.03*	465	413	1.37	1164.42	3.07E+00	7.48E-03	10.9	1.06E+00
14	1	609.24*	766	365	1.32	1216.92	2.94E+00	1.23E-02	6.9	9.42E-01
15	1	911.05*	313	214	1.70	1821.40	1.94E+00	5.05E-03	11.6	5.51E-01
16	1	969.00*	206	177	1.81	1937.49	1.82E+00	3.32E-03	15.7	1.30E+00
17	1	1120.00*	217	120	2.71	2239.98	1.57E+00	3.49E-03	13.8	1.34E+00
18	1	1460.58*	1000	72	2.02	2922.33	1.21E+00	1.61E-02	4.3	1.45E+00
19	1	1764.08*	79	87	2.07	3530.53	1.04E+00	1.27E-03	32.4	1.30E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	21				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1000	10.67*	1.211E+00	1.321E+01	1.321E+01	8.55
BI-214	609.31	766	46.30	2.937E+00	9.608E-01	9.609E-01	13.72
	1120.29	217	15.10*	1.566E+00	1.564E+00	1.564E+00	27.70
	1764.49	79	15.80	1.037E+00	8.218E-01	8.219E-01	64.79
RA-226	186.21	377	3.28*	8.550E+00	2.292E+00	2.292E+00	44.80
RA-228	93.35	627	3.50	9.267E+00	3.299E+00	3.335E+00	29.39
	969.11	206	16.60*	1.817E+00	1.166E+00	1.179E+00	31.43
TH-234	63.29		3.80*	5.083E+00	Li	ne Not Found	
	92.60	627	5.41	9.267E+00	2.134E+00	2.134E+00	29.39

L95403 249 of 332

					•	
U-235	143.76 163.35 185.71 205.31	377	10.50* 4.70 54.00 4.70	9.757E+00 9.227E+00 8.550E+00 7.978E+00	Line Not Found Line Not Found 1.392E-01 1.392E-01 Line Not Found	44.80
Nuclide T	'ype: NATUR	ΔΤ ,				
Nuclide TL-208 PB-212 PB-214 TH-232	Energy 583.17 238.63 295.21 351.92 911.21	Area 465 1770 574 1002 313	%Abn 30.25* 44.60* 19.20 37.20* 27.70*	%Eff 3.071E+00 7.097E+00 5.908E+00 5.027E+00 1.938E+00	Uncorrected Decay Corr pCi/g Dry pCi/g Dry 8.539E-01 8.818E-01 9.548E-01 9.860E-01 8.642E-01 8.642E-01 9.150E-01 9.150E-01 9.964E-01 9.964E-01	2-Sigma %Error 21.82 7.32 23.31 12.67 23.28
Nuclide T	'ype: natura	al				
Nuclide AC-228	Energy 835.50 911.07	Area 313	%Abn 1.75 27.70*	%Eff 2.121E+00 1.938E+00	Uncorrected Decay Corr pCi/g Dry pCi/g Dry Line Not Found 9.964E-01 1.007E+00	2-Sigma %Error 23.28

Summary of Nuclide Activity Page : Sample ID : 14L95403-11 Acquisition date : 17-MAR-2022 14:52:10

Total number of lines in spectrum 19 Number of unidentified lines 7 Number of lines tentatively identified by NID 12

63.16%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.321E+01 1.321E+01 0.113E+01 8.55 BI-214 1600.00Y 1.00 1.564E+00 1.564E+00 0.433E+00 27.70 RA-226 1600.00Y 1.00 2.292E+00 2.292E+00 1.027E+00 44.80 RA-228 5.75Y 1.01 1.166E+00 1.179E+00 0.371E+00 31.43 TH-234 4.47E+09Y 1.00 2.134E+00 2.134E+00 0.627E+00 29.39 K U-235 7.04E+08Y 1.00 1.392E-01 1.392E-01 0.624E-01 44.80 K _____ _____

Total Activity : 2.051E+01 2.052E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 8.539E-01 8.818E-01 1.925E-01 21.82 PB-212 1.91Y 1.03 9.548E-01 9.860E-01 0.722E-01 7.32 PB-214 1600.00Y 1.00 9.150E-01 9.150E-01 1.159E-01 12.67 TH-232 1.41E+10Y 1.00 9.964E-01 9.964E-01 23.28 2.320E-01 _____ ______

Total Activity: 3.720E+00 3.779E+00

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/q Dry pCi/q Dry 2-Sigma Error %Error Flags AC-228 5.75Y 9.964E-01 1.01 1.007E+00 0.235E+00 23.28 _____ _____

> Total Activity: 9.964E-01 1.007E+00

Grand Total Activity : 2.522E+01 2.531E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"E" = Manually edited "A" = Nuclide specific abn. limit Unidentified Energy Lines Page: 3 Sample ID : 14L95403-11 Acquisition date : 17-MAR-2022 14:52:10

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 4 4 7 1	74.90 77.18 84.52 87.19 241.66 338.26 510.90	369 911 33 310 607 387 81	1557 1328 1210 913 1004 581	0.74 0.84 1.25 0.89 1.90 1.16	146.95 151.52 166.21 171.55 480.83 674.27	149 162 162 470 669	6 14 14 17 9	5.94E-03 1.47E-02 5.29E-04 4.99E-03 9.78E-03 6.23E-03 1.31E-03	14.3 **** 36.5 24.8 24.6	7.57E+00 8.51E+00 8.78E+00 7.02E+00 5.22E+00))))

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 19 Number of unidentified lines 7 Number of lines tentatively identified by NID 12 63.16%

Nuclide Type :

	-100.						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Siqma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.321E+01	1.321E+01	0.113E+01	8.55	9
BI-214	1600.00Y	1.00	1.002E+00	1.002E+00	0.123E+00	12.25	
RA-226	1600.00Y	1.00	2.292E+00	2.292E+00	1.027E+00	44.80	
RA-228	5.75Y	1.01	1.166E+00	1.179E+00	0.371E+00	31.43	
	Total Acti	vity :	1.767E+01	1.768E+01			

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error I	Flags
TL-208	1.91Y	1.03	8.539E-01	8.818E-01	1.925E-01	21.82	
PB-212	1.91Y	1.03	9.548E-01	9.860E-01	0.722E-01	7.32	
PB-214	1600.00Y	1.00	9.024E-01	9.024E-01	1.005E-01	11.14	
TH-232	1.41E+10Y	1.00	9.964E-01	9.964E-01	2.320E-01	23.28	
	Total Acti	vity:	3.707E+00	3.767E+00			

Nuclide Type : natural

	-		Wtd Mean	Wtd Mean			
		4			Decay Corr		
Nuclide					2-Sigma Error		ags
AC-228	5.75Y	1.01	9.964E-01	1.007E+00	0.235E+00	23.28	
	Total Acti	vity:	9.964E-01	1.007E+00			

Grand Total Activity : 2.237E+01 2.246E+01

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.321E+01 8.818E-01 9.860E-01 1.002E+00 9.024E-01 2.292E+00 1.007E+00 1.179E+00 9.964E-01	1.129E+00 1.925E-01 7.222E-02 1.227E-01 1.005E-01 1.027E+00 2.345E-01 3.705E-01 2.320E-01	5.472E-01 1.457E-01 6.547E-02 4.151E-01 9.283E-02 7.700E-01 1.956E-01 3.937E-01 1.936E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	24.143 6.054 15.060 2.414 9.721 2.977 5.149 2.994 5.148
Non-Id	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 CS-137 LA-138 BI-212 PA-234M TH-234 U-235 U-238	-3.210E-03 2.678E-02 4.274E-03 7.248E-01 4.230E+00 1.237E+00 2.024E-01 4.230E+00	3.552E-02 3.921E-02 5.562E-02 4.450E-01 3.951E+00 8.768E-01 1.314E-01 3.951E+00	5.883E-02 6.457E-02 9.262E-02 7.943E-01 6.830E+00 1.328E+00 2.267E-01 6.830E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.055 0.415 0.046 0.913 0.619 0.932 0.893 0.619

```
A,14L95403-11
                    ,03/18/2022 08:07,02/13/2022 12:56,
                                                               2.550E+01,L95403-11 SS A
B,14L95403-11
                    , NORMK
                                            ,08/11/2021 12:59,14S25121719
C, K-40
           , YES,
                    1.321E+01,
                                                  5.472E-01,,
                                   1.129E+00.
                                                                 24.143
           , YES,
C, TL-208
                    8.818E-01,
                                   1.925E-01,
                                                  1.457E-01,,
                                                                  6.054
C, PB-212
           , YES,
                                                  6.547E-02,,
                    9.860E-01,
                                   7.222E-02,
                                                                 15.060
C, BI-214
           , YES,
                    1.002E+00,
                                   1.227E-01,
                                                  4.151E-01,,
                                                                   2.414
C, PB-214
           , YES,
                                   1.005E-01,
                                                  9.283E-02,,
                    9.024E-01,
                                                                   9.721
C, RA-226
           , YES,
                    2.292E+00,
                                   1.027E+00,
                                                  7.700E-01,,
                                                                   2.977
C, AC-228
           , YES,
                    1.007E+00,
                                   2.345E-01,
                                                  1.956E-01,,
                                                                   5.149
C, RA-228
           , YES,
                    1.179E+00,
                                   3.705E-01,
                                                                  2.994
                                                  3.937E-01,,
C, TH-232
           , YES,
                    9.964E-01,
                                   2.320E-01,
                                                  1.936E-01,,
                                                                  5.148
C, CO-60
           ,NO,
                   -3.210E-03,
                                   3.552E-02,
                                                  5.883E-02,,
                                                                  -0.055
C, CS-137
           ,NO,
                    2.678E-02,
                                   3.921E-02,
                                                  6.457E-02,,
                                                                  0.415
C, LA-138
           , NO
                    4.274E-03,
                                                  9.262E-02,,
                                   5.562E-02,
                                                                  0.046
           , NO
C, BI-212
                    7.248E-01,
                                   4.450E-01,
                                                  7.943E-01,,
                                                                  0.913
C, PA-234M
           ,NO,
                    4.230E+00,
                                   3.951E+00,
                                                  6.830E+00,,
                                                                  0.619
C, TH-234
           ,NO ,
                    1.237E+00,
                                   8.768E-01,
                                                  1.328E+00,,
                                                                   0.932
C, U-235
           , NO
                                                  2.267E-01,,
                    2.024E-01,
                                   1.314E-01,
                                                                  0.893
C, U-238
           ,NO,
                    4.230E+00,
                                   3.951E+00,
                                                  6.830E+00,,
                                                                  0.619
```

Analyst \

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:07:27.82 TBE08 31-TP20610B HpGe ******* Aquisition Date/Time: 17-MAR-2022 14:52:11.25

LIMS No., Customer Name, Client ID: L95403-12 SS ANCHOR QEA

Sample ID : 08L95403-12 Smple Date: 13-FEB-2022 12:56:00.

 Sample Type : SS
 Geometry : 08S25121919

 Quantity : 2.69000E+01 g Dry
 BKGFILE : 08BG030422MT

 Start Channel : 20
 Brown Tolk : 200000

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	1	75.30*	0	1522	0.94	156.70	5.38E+00	3.25E-06****	1.70E+00
2	1	85.00*	26	1059	1.20	176.06	6.66E+00	4.21E-04249.7	1.89E+00
3	1	93.28*	144	1413	1.76	192.58	7.47E+00	2.33E-03 55.9	3.71E+00
4	1	186.23*	25	1589	1.23	377.95	7.69E+00	3.97E-04356.9	6.92E-01
5	1	239.09*	216	1213	1.27	483.37	6.48E+00	3.48E-03 34.5	9.91E-01
6	1	295.70*	240	866	1.43	596.25	5.45E+00	3.87E-03 27.0	8.37E-01
7	1	352.39*	323	716	1.71	709.30	4.68E+00	5.20E-03 20.5	1.42E+00
8	1	511.35*	33	825	2.77	1026.20	3.32E+00	5.39E-04265.1	1.77E+00
9	1	583.77*	113	404	1.92	1170.55	2.93E+00	1.83E-03 42.8	1.42E+00
10	1	609.73*	348	623	1.96	1222.30	2.81E+00	5.61E-03 19.0	2.14E+00
11	1	911.27*	30	219	2.03	1823.20	1.89E+00	4.87E-04126.8	1.45E+00
12	1	1120.18*	104	159	2.86	2239.36	1.54E+00	1.67E-03 31.3	1.97E+00
13	1	1461.06*	181	118	2.33	2918.17	1.21E+00	2.91E-03 22.3	1.51E+00
14	1	1765.09*	96	32	2.63	3523.35	1.05E+00	1.54E-03 23.4	1.23E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	181	10.67*	1.209E+00	2.266E+00	2.266E+00	44.52
BI-214	609.31	348	46.30	2.808E+00	4.337E-01	4.337E-01	38.08
	1120.29	104	15.10*	1.542E+00	7.201E-01	7.201E-01	62.58
	1764.49	96	15.80	1.049E+00	9.355E-01	9.355E-01	46.79
RA-226	186.21	25	3.28*	7.690E+00	1.581E-01	1.582E-01	713.77

Nuclide Type: NATURAL

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	113	30.25*	2.929E+00	2.070E-01	2.138E-01	85.66
PB-212	238.63	216	44.60*	6.480E+00	1.210E-01	1.250E-01	69.07
PB-214	295.21	240	19.20	5.452E+00	3.714E-01	3.714E-01	53.91
	351.92	323	37.20*	4.679E+00	3.001E-01	3.001E-01	40.92

L95403 255 of 332

TH-232 911.21 30 27.70* 1.890E+00 9.349E-02 9.349E-02 253.55

Nuclide Type: natural

 Nuclide
 Energy
 Area
 %Abn
 %Eff
 pCi/g Dry
 pCi/g Dry
 %Error

 AC-228
 835.50
 ---- 1.75
 2.061E+00
 ---- Line Not Found

 911.07
 30
 27.70*
 1.890E+00
 9.349E-02
 9.450E-02
 253.55

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID: 08L95403-12 Acquisition date: 17-MAR-2022 14:52:11

Total number of lines in spectrum 14
Number of unidentified lines 3

Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 44.52 2.266E+00 2.266E+00 1.009E+00 BI-214 1600.00Y 1.00 7.201E-01 7.201E-01 4.507E-01 62.58 RA-226 1600.00Y 1.00 1.581E-01 1.582E-01 11.29E-01 713.77

Total Activity: 3.144E+00 3.144E+00

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/g Dry Nuclide pCi/g Dry Hlife 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 2.070E-01 2.138E-01 1.831E-01 85.66 PB-212 1.03 1.210E-01 1.91Y 1.250E-01 0.863E-01 69.07 3.001E-01 PB-214 1600.00Y 1.00 3.001E-01 1.228E-01 40.92 TH-232 1.41E+10Y 1.00 9.349E-02 23.70E-02 9.349E-02 253.55 ___________ Total Activity: 7.216E-01 7.324E-01

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma pCi/g Dry Nuclide Hlife Decay pCi/q Dry 2-Sigma Error %Error Flags AC-228 5.75Y 1.01 9.349E-02 9.450E-02 23.96E-02 253.55 _____ ----

Total Activity: 9.349E-02 9.450E-02

Grand Total Activity : 3.959E+00 3.971E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3 Sample ID: 08L95403-12 Acquisition date: 17-MAR-2022 14:52:11

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	75.30	0	1522	0.94	156.70	153	7	3.25E-06	****	5.38E+00	
1	85.00	26	1059	1.20	176.06	173	7	4.21E-04	***	6.66E+00	
1	93.28	144	1413	1.76	192.58	188	10	2.33E-03	***	7.47E+00	${ m T}$
1	511.35	33	825	2.77	1026.20	1017	19	5.39E-04	****	3.32E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14
Number of unidentified lines 3
Number of lines tentatively identified by NID 11 78.57%

Nuclide Type :

IVACLIAC	Type.						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error I	Flags
K-40	1.28E+09Y	1.00	2.266E+00	2.266E+00	1.009E+00	44.52	3
BI-214	1600.00Y	1.00	5.197E-01	5.197E-01	1.462E-01	28.12	
RA-226	1600.00Y	1.00	1.581E-01	1.582E-01	11.29E-01	713.77	
			*** *** *** *** *** *** ***				
	Total Acti	vity :	2.944E+00	2.944E+00			

Nuclide Type : NATURAL

	4 1.		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error		Flags
TL-208	1.91Y	1.03	2.070E-01	2.138E-01	1.831E-01	85.66	9
PB-212	1.91Y	1.03	1.210E-01	1.250E-01	0.863E-01	69.07	
PB-214	1600.00Y	1.00	3.196E-01	3.196E-01	1.047E-01	32.75	
TH-232	1.41E+10Y	1.00	9.349E-02	9.349E-02	23.70E-02	253.55	
				prom. area court more many come before their dear			
	Total Acti	vity:	7.411E-01	7.519E-01			

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	9.349E-02	9.450E-02	23.96E-02	253.55	
			*** *** *** *** *** *** ***				

Total Activity: 9.349E-02 9.450E-02

Grand Total Activity : 3.778E+00 3.790E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 PB-212 BI-214	2.266E+00 2.138E-01 1.250E-01 5.197E-01	1.009E+00 1.831E-01 8.633E-02 1.462E-01	5.480E-01 1.656E-01 7.932E-02 4.251E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	4.135 1.291 1.576 1.223
PB-214 RA-226 AC-228 TH-232	3.196E-01 1.582E-01 9.450E-02 9.349E-02	1.047E-01 1.129E+00 2.396E-01 2.370E-01	1.076E-01 9.285E-01 1.974E-01 1.963E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	2.971 0.170 0.479 0.476
Non-Id	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
Nuclide CO-60 CS-137 LA-138 BI-212 RA-228 PA-234M	Activity K.L.	Act error 3.506E-02 3.622E-02 5.619E-02 4.534E-01 2.950E-01 3.971E+00		MDA error 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.516 -0.197 0.112 0.374 -0.069 0.506

```
A,08L95403-12
                    ,03/18/2022 08:07,02/13/2022 12:56,
                                                               2.690E+01,L95403-12 SS A
B,08L95403-12
                    , NORMK
                                            ,11/17/2021 15:23,08S25121919
C, K-40
           , YES,
                    2.266E+00,
                                   1.009E+00,
                                                 5.480E-01,,
                                                                  4.135
C, TL-208
           , YES,
                                                 1.656E-01,,
                    2.138E-01,
                                   1.831E-01,
                                                                  1.291
           , YES,
C, PB-212
                    1.250E-01,
                                   8.633E-02,
                                                 7.932E-02,,
                                                                  1.576
C, BI-214
           ,YES,
                    5.197E-01,
                                   1.462E-01,
                                                 4.251E-01,,
                                                                  1.223
C, PB-214
           , YES,
                    3.196E-01,
                                   1.047E-01,
                                                 1.076E-01,,
                                                                  2.971
           , YES,
C, RA-226
                    1.582E-01,
                                   1.129E+00,
                                                 9.285E-01,,
                                                                  0.170
C, AC-228
           , YES,
                    9.450E-02,
                                   2.396E-01,
                                                 1.974E-01,
                                                                  0.479
C, TH-232
           , YES,
                    9.349E-02,
                                   2.370E-01,
                                                 1.963E-01,,
                                                                  0.476
C, CO-60
                                                 6.168E-02,,
           ,NO,
                    3.182E-02,
                                   3.506E-02,
                                                                  0.516
C, CS-137
           ,NO,
                   -1.163E-02,
                                                 5.912E-02,,
                                   3.622E-02,
                                                                 -0.197
C, LA-138
           ,NO,
                    1.051E-02,
                                   5.619E-02,
                                                 9.391E-02,,
                                                                  0.112
           ,NO,
C, BI-212
                    2.862E-01,
                                   4.534E-01,
                                                 7.651E-01,,
                                                                  0.374
C, RA-228
           ,NO,
                   -2.899E-02,
                                  2.950E-01,
                                                 4.197E-01,,
                                                                 -0.069
C, PA-234M
           ,NO,
                                   3.971E+00,
                    3.390E+00,
                                                 6.704E+00,,
                                                                  0.506
C, TH-234
           ,NO,
                   -2.814E-01,
                                  1.237E+00,
                                                 1.962E+00,,
                                                                 -0.143
C, U-235
           ,NO ,
                    1.243E-03,
                                  1.636E-01,
                                                 2.739E-01,,
                                                                  0.005
C, U-238
                    3.390E+00,
           ,NO ,
                                  3.971E+00,
                                                 6.704E+00,,
                                                                  0.506
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:07:41.69 TBE23 11410 HpGe ******* Aquisition Date/Time: 17-MAR-2022 14:52:11.98

LIMS No., Customer Name, Client ID: L95403-13 SS ANCHOR QEA

Sample ID : 23L95403-13 Smple Date: 13-FEB-2022 12:56:00.

Sample Type : SS Geometry : 23S25122820 Quantity : 2.14000E+01 g Dry BKGFILE : 23BG030422MT

End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 17:15:06.03

MDA Multiple : 4.6600 Library Used: NORMK

Peak Evaluation - Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.13*	334	1859	0.95	92.54	3.97E+00	5.37E-03	28.5	
2	0	63.27*	58	1627	0.92	126.80	9.32E+00	9.27E-043	135.9	
3	2	74.78*	1054	1050	0.89	149.79	1.15E+01	1.70E-02	6.2	2.89E+00
4	2	77.04*	1551	941	0.86	154.31	1.18E+01	2.50E-02	4.5	
5	0	84.11*	202	1061	1.09	168.45	1.25E+01	3.26E-03	30.4	
6	0	86.94*	444	1414	1.07	174.10	1.27E+01	7.15E-03	16.0	
7	0	92.72*	538	1446	1.25	185.65	1.29E+01	8.66E-03	15.1	
8	0	185.76*	559	1309	1.19	371.64	1.01E+01	9.00E-03	14.7	
9	0	209.11	303	734	1.12	418.33	9.31E+00	4.88E-03	16.0	
10	6	238.48*	2220	666	0.99	477.04	8.50E+00	3.57E-02	3.3	1.71E+00
11	6	241.49*	619	957	1.67	483.07	8.42E+00	9.97E-03	12.2	
12	0	270.19	224	888	1.47	540.45	7.78E+00	3.61E-03	25.8	
13	0	295.04*	778	777	1.10	590.15	7.29E+00	1.25E-02	8.0	
. 14	0	338.11	536	784	1.00	676.27	6.60E+00	8.64E-03	11.0	
15	0	351.70*	1265	606	1.18	703.45	6.40E+00	2.04E-02	4.9	
16	0	462.59	134	383	1.09	925.26	5.17E+00	2.15E-03	26.8	
17	0	510.83*	411	733	1.95	1021.76	4.76E+00	6.62E-03	21.4	
18	0	582.92*	614	453	1.17	1166.00	4.25E+00	9.89E-03	9.1	
19	0	608.94*	1010	479	1.26	1218.06	4.08E+00	1.63E-02	5.5	
20	0	727.08*	213	338	1.20	1454.52	3.47E+00	3.44E-03	20.6	
21	0	860.33*	91	194	1.40	1721.27	2.94E+00	1.47E-03	34.3	
22	0	910.82*	388	231	1.51	1822.37	2.78E+00	6.25E-03	9.9	
23	0	968.43	306	209	1.60	1937.75	2.61E+00	4.93E-03	10.8	
24	0	1119.94*	170	174		2241.24		2.74E-03		
25	0	1459.93*	1420	115	1.94	2922.68	1.78E+00		3.3	
26	0	1763.21*	224	54	2.32	3530.96	1.57E+00	3.61E-03	10.7	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1420	10.67*	1.781E+00	1.520E+01	1.520E+01	6.68
BI-214	609.31	1010	46.30	4.085E+00	1.086E+00	1.086E+00	11.05

L95403 261 of 332

							4
	1120.29	170	15.10*	2.263E+00	1.014E+00	1.014E+00	35.92
	1764.49	224	15.80	1.574E+00	1.834E+00	1.834E+00	21.33
RA-226	186.21	559	3.28*	1.008E+01	3.437E+00	3.438E+00	29.43
RA-228	93.35	538	3.50	1.290E+01	2.422E+00	2.448E+00	30.24
	969.11	306	16.60*	2.613E+00	1.434E+00	1.450E+00	21.58
TH-234	63.29	58	3.80*	9.319E+00	3.308E-01	3.308E-01	271.77
	92.60	538	5.41	1.290E+01	1.567E+00	1.567E+00	30.24
			- ,		_,_,_,	1,00,1,00	30.21
Nuclide T	Type: NATURA	L					
	~ ~				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/q Dry	pCi/q Dry	%Error
TL-208	583.17	614	30.25*	4.247E+00	9.719E-01	1.004E+00	18.24
BI-212	727.17	213	7.56*	3.465E+00	1.657E+00	1.711E+00	41.17
PB-212	238.63	2220	44.60*	8.500E+00	1.191E+00	1.230E+00	6.60
PB-214	295.21	778	19.20	7.295E+00	1.129E+00	1.129E+00	16.03
	351.92	1265	37.20*	6.403E+00	1.080E+00	1.080E+00	9.75
TH-232	911.21	388	27.70*	2.779E+00	1.025E+00	1.025E+00	19.84
Nuclide T	Type: natura	1					
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
AC-228	835.50		1.75	3.027E+00	Li	ne Not Found	
	911.07	388	27.70*	2.779E+00	1.025E+00	1.037E+00	19.84

Flag: "*" = Keyline

Summary of Nuclide Activity Page : Sample ID : 23L95403-13 Acquisition date : 17-MAR-2022 14:52:11

Total number of lines in spectrum 26 Number of unidentified lines 12

Number of lines tentatively identified by NID 14 53.85%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/g Dry Nuclide Hlife pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.520E+01 0.101E+01 1.520E+01 6.68 BI-214 1600.00Y 1.00 1.014E+00 1.014E+00 0.364E+00 35.92 RA-226 1600.00Y 1.00 3.437E+00 29.43 3.438E+00 1.012E+00 1.01 RA-228 5.75Y 1.434E+00 1.450E+00 0.313E+00 21.58 TH-234 4.47E+09Y 1.00 3.308E-01 3.308E-01 8.989E-01 271.77 ______ _____

Total Activity: 2.142E+01 2.143E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr 2-Sigma Decay Corr Nuclide Hlife Decay pCi/q Dry pCi/q Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 9.719E-01 1.004E+00 0.183E+00 18.24 BI-212 1.03 1.657E+00 41.17 1.91Y 1.711E+00 0.704E+00 PB-212 1.91Y 1.03 1.191E+00 1.230E+00 0.081E+00 6.60 PB-214 1600.00Y 1.00 1.080E+00 1.080E+00 0.105E+00 9.75 TH-232 1.41E+10Y 0.203E+00 1.00 1.025E+00 1.025E+00 19.84 ----

Total Activity : 5.925E+00 6.050E+00

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/q Dry pCi/q Dry 2-Sigma Error %Error Flags AC-228 5.75Y 1.01 1.025E+00 1.037E+00 0.206E+00 19.84

Total Activity: 1.025E+00 1.037E+00

Grand Total Activity : 2.837E+01 2.852E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3 Acquisition date : 17-MAR-2022 14:52:11

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	46.13 74.78	334 1054	1859 1050	0.95 0.89	92.54 149.79	87 144	11 21	5.37E-03 1.70E-02	57.1 12.3	3.97E+00 1.15E+01	
2	77.04	1551	941	0.86	154.31	144	21	2.50E-02	8.9	1.18E+01	
0	84.11	202	1061	1.09	168.45	166	6	3.26E-03	60.9	1.25E+01	
0	86.94	444	1414	1.07	174.10	172	7	7.15E-03	32.0	1.27E+01	
0	209.11	303	734	1.12	418.33	415	7	4.88E-03	31.9	9.31E+00	
6	241.49	619	957	1.67	483.07	472	17	9.97E-03	24.5	8.42E+00	
0	270.19	224	888	1.47	540.45	535	10	3.61E-03	51.6	7.78E+00	
. 0	338.11	536	784	1.00	676.27	671	11	8.64E-03	22.0	6.60E+00	
0	462.59	134	383	1.09	925.26	922	8	2.15E-03	53.6	5.17E+00	
0	510.83	411	733	1.95	1021.76	1014	19	6.62E-03	42.7	4.76E+00	
0	860.33	91	194	1.40	1721.27	1717	10	1.47E-03	68.5	2.94E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total num	per of	lines in s	pectrum		26	
		ntified lin			12	
Number of	lines	tentativel	y identified	by NID	14	53.85%

T.	T111	٦٦.	-	20	Type	
- 11	J L J C	: 1		(10.	1 \(\to \(\to \(\to \)	- 1

Nuclide	Type :					
			Wtd Mean	Wtd Mean		0.01
	117 ! C -	D = ====	Uncorrected	Decay Corr	Decay Corr	
Nuclide K-40	Hlife 1.28E+09Y	Decay 1.00		pCi/g Dry 1.520E+01	2-Sigma Error 0.101E+01	%Error Flags 6.68
	1.28E+091 1600.00Y	1.00		1.079E+00	0.101E+01 0.114E+00	10.57
	1600.001 1600.00Y	1.00		3.438E+00	1.012E+00	29.43
RA-228	5.75Y	1.01		1.450E+00		21.58
TH-234	4.47E+09Y	1.00		3.308E-01	8.989E-01	
111 251	1.1/11/02	1.00			0.3032 02	
	Total Acti	vity:	2.148E+01	2.150E+01		
Nuclide	Type : NATU	JRAL				
	ek. utu		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	
Nuclide	Hlife	Decay	<u> </u>		2-Sigma Error	
TL-208	1.91Y	1.03		1.004E+00	0.183E+00	18.24
	1.91Y	1.03		1.711E+00	0.704E+00	41.17
PB-212	1.91Y	1.03		1.230E+00	0.081E+00	6.60
	1600.00Y	1.00		1.093E+00	0.091E+00 0.203E+00	8.33 19.84
TH-232	1.41E+10Y	1.00	1.025E+00	1.025E+00	0.2036+00	19.84
	Total Acti	.vity :		6.063E+00		
Nuclide	Type : natu	ıral				
			Wtd Mean	Wtd Mean		0 01
		_	Uncorrected		Decay Corr	
Nuclide			pCi/g Dry			%Error Flags
AC-228	5.75Y	1.01	1.025E+00	1.037E+00	0.206E+00	19.84

Grand Total Activity : 2.844E+01 2.860E+01

Total Activity : 1.025E+00 1.037E+00

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed $% \left(1\right) =\left(1\right) \left(

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40	1.520E+01	1.015E+00	4.903E-01	0.000E+00	31.003
TL-208	1.004E+00	1.830E-01	1.441E-01	0.000E+00	6.966
BI-212	1.711E+00	7.044E-01	5.815E-01	0.000E+00	2.942
PB-212	1.230E+00	8.120E-02	7.032E-02	0.000E+00	17.491
BI-214	1.079E+00	1.140E-01	3.550E-01	0.000E+00	3.039
PB-214	1.093E+00	9.105E-02	9.142E-02	0.000E+00	11.951
RA-226	3.438E+00	1.012E+00	8.055E-01	0.000E+00	4.267
AC-228	1.037E+00	2.057E-01	1.835E-01	0.000E+00	5.649
RA-228	1.450E+00	3.128E-01	2.869E-01	0.000E+00	5.054
TH-232	1.025E+00	2.035E-01	1.723E-01	0.000E+00	5.951
TH-234	3.308E-01	8.989E-01	9.145E-01	0.000E+00	0.362
Non-T	dentified Nuclide	· g			

Non-Identified Nuclides

Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60	1.518E-02	3.319E-02	5.925E-02	0.000E+00	0.256
CS-137	3.936E-02	3.155E-02	5.589E-02	0.000E+00	0.704
LA-138	1.418E-02	4.498E-02	8.022E-02	0.000E+00	0.177
PA-234M	-1.230E+00	3.940E+00	6.019E+00	0.000E+00	-0.204
U-235	-9.843E-02	1.595E-01	2.368E-01	0.000E+00	-0.416
U-238	-1.230E+00	3.940E+00	6.019E+00	0.000E+00	-0.204

```
A,23L95403-13
                    ,03/18/2022 08:07,02/13/2022 12:56,
                                                               2.140E+01,L95403-13 SS A
B, 23L95403-13
                    , NORMK
                                            ,03/07/2022 09:36,23S25122820
                                   1.015E+00,
C, K-40
           , YES,
                    1.520E+01,
                                                 4.903E-01,,
                                                                 31.003
           ,YES,
                                                 1.441E-01,,
                                                                  6.966
C, TL-208
                    1.004E+00,
                                   1.830E-01,
C, BI-212
           , YES,
                    1.711E+00,
                                                 5.815E-01,,
                                                                  2.942
                                   7.044E-01,
                                                 7.032E-02,,
C, PB-212
           , YES,
                    1.230E+00,
                                   8.120E-02,
                                                                 17.491
C, BI-214
           , YES,
                    1.079E+00,
                                   1.140E-01,
                                                 3.550E-01,,
                                                                  3.039
C, PB-214
           , YES,
                    1.093E+00,
                                   9.105E-02,
                                                 9.142E-02,,
                                                                 11.951
C, RA-226
           , YES,
                    3.438E+00,
                                   1.012E+00,
                                                 8.055E-01,,
                                                                  4.267
C, AC-228
                    1.037E+00,
                                   2.057E-01,
                                                 1.835E-01,,
                                                                  5.649
           , YES,
           , YES,
C, RA-228
                    1.450E+00,
                                   3.128E-01,
                                                 2.869E-01,,
                                                                  5.054
C, TH-232
           , YES,
                    1.025E+00,
                                   2.035E-01,
                                                 1.723E-01,,
                                                                  5.951
                                                 9.145E-01,,
C, TH-234
                    3.308E-01,
                                                                  0.362
           ,YES,
                                   8.989E-01,
           ,NO,
C, CO-60
                    1.518E-02,
                                   3.319E-02,
                                                 5.925E-02,,
                                                                  0.256
C, CS-137
           ,NO,
                    3.936E-02,
                                   3.155E-02,
                                                 5.589E-02,,
                                                                  0.704
C, LA-138
                                                 8.022E-02,,
                                                                  0.177
           ,NO,
                    1.418E-02,
                                   4.498E-02,
C, PA-234M
           , NO
                   -1.230E+00,
                                   3.940E+00,
                                                 6.019E+00,,
                                                                 -0.204
C, U-235
           ,NO,
                   -9.843E-02,
                                   1.595E-01,
                                                 2.368E-01,,
                                                                 -0.416
C, U-238
           ,NO,
                   -1.230E+00,
                                   3.940E+00,
                                                 6.019E+00,,
                                                                 -0.204
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:47.09 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:13:52.41

LIMS No., Customer Name, Client ID: L95403-14 SS ANCHOR QEA

Sample ID : 11L95403-14 Smple Date: 13-FEB-2022 12:56:00.

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	46.49*	680	2219	1.14	91.61	6.56E+00	1.05E-02	15.9	
2	0	63.36*	275	2084	1.33	125.34	7.37E+00	4.25E-03	33.0	
. 3	0	77.36*	1294	2679	1.07	153.33	7.42E+00	2.00E-02	7.9	
4	3	84.68*	329	1666	1.55	167.97	7.33E+00	5.07E-03	26.2	1.67E+00
5	3	87.36*	507	1494	1.05	173.31	7.28E+00	7.82E-03	14.4	
6	0	92.95*	645	2202	1.42	184.50	7.17E+00	9.95E-03	16.6	
7	0	185.96*	405	2097	1.46	370.45	4.98E+00	6.25E-03	25.5	
8	0	209.46	219	1285	1.42	417.44	4.56E+00	3.38E-03	29.1	
9	3	238.86*	2671	1055	1.35	476.22	4.12E+00	4.12E-02	3.2	1.97E+00
10	3	241.79	735	1432	1.84	482.08	4.08E+00	1.13E-02	11.6	
11	0	295.32*	722	1271	1.44	589.12	3.47E+00	1.11E-02	11.2	
12	0	338.60	509	1047	1.16	675.65	3.09E+00	7.86E-03	12.7	
13	0	352.13*	1402	1159	1.54	702.69	2.99E+00	2.16E-02	6.3	
14	0	511.27*	350	1045	2.56	1020.88	2.18E+00	5.40E-03	31.1	
15	0	583.49*	664	548	1.56	1165.29	1.95E+00	1.02E-02	9.0	
16	0	609.72*	842	823	1.50	1217.72	1.87E+00	1.30E-02	9.1	
17	0	727.75	198	459	1.51	1453.72	1.62E+00	3.05E-03	23.5	
18	0	846.88*	98	409	1.80	1691.90	1.42E+00	1.52E-03	53.2	
19	0	911.39*	490	359	2.04	1820.89	1.34E+00	7.57E-03	10.6	
20	0	969.61*	295	412	1.56	1937.29	1.27E+00	4.55E-03	17.0	
21	0	1121.43*	137	352	2.04	2240.85	1.13E+00	2.12E-03	34.3	
22	0	1461.37*	1456	293	2.27	2920.56	9.01E-01	2.25E-02	4.5	
23	0	1765.80*	134	108	1.61	3529.25	7.61E-01	2.07E-03	22.8	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1456	10.67*	9.006E-01	1.515E+01	1.515E+01	9.01
BI-214	609.31	842	46.30	1.875E+00	9.706E-01	9.706E-01	18.20
	1120.29	137	15.10*	1.128E+00	8.076E-01	8.076E-01	68.63
	1764.49	134	15.80	7.611E-01	1.113E+00	1.113E+00	45.55
RA-226	186.21	405	3.28*	4.982E+00	2.480E+00	2.480E+00	50.95
						105400 007 60	00

L95403 267 of 332

RA-228 TH-234	93.35 969.11 63.29 92.60	645 295 275 645	3.50 16.60* 3.80* 5.41	7.173E+00 1.273E+00 7.368E+00 7.173E+00	2.568E+00 1.396E+00 9.842E-01 1.662E+00	2.597E+00 1.411E+00 9.842E-01 1.662E+00	33.16 34.01 66.05 33.16
Nuclide 7	Type: NATURA	.L					
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	664	30.25*	1.946E+00	1.128E+00	1.166E+00	18.06
BI-212	727.17	198	7.56*	1.616E+00	1.617E+00	1.671E+00	47.03
PB-212	238.63	2671	44.60*	4.120E+00	1.454E+00	1.503E+00	6.34
PB-214	295.21	722	19.20	3.467E+00	1.085E+00	1.085E+00	22.36
	351.92	1402	37.20*	2.990E+00	1.261E+00	1.261E+00	12.53
TH-232	911.21	490	27.70*	1.340E+00	1.321E+00	1.321E+00	21.15
Nuclide 7	Гуре: natura	.1.					
Nuclide AC-228	Energy 835.50 911.07	Area 490	%Abn 1.75 27.70*	%Eff 1.440E+00 1.340E+00	Uncorrected pCi/g Dry Li: 1.321E+00	Decay Corr pCi/g Dry ne Not Found 1.336E+00	2-Sigma %Error 21.15

Summary of Nuclide Activity Page: 2 Acquisition date : 18-MAR-2022 11:13:52 Sample ID : 11L95403-14

Total number of lines in spectrum 23 Number of unidentified lines 9

Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 9.01 1.515E+01 1.515E+01 0.136E+01 BI-214 1600.00Y 1.00 8.076E-01 8.076E-01 5.542E-01 68.63 RA-226 1.00 1600.00Y 2.480E+00 2,480E+00 1.263E+00 50.95 RA-228 5.75Y 1.01 1.396E+00 1.411E+00 0.480E+00 34.01 TH-234 4.47E+09Y 1.00 9.842E-01 6.501E-01 66.05 9.842E-01 _____

Total Activity : 2.082E+01 2.084E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/g Dry pCi/g Dry Nuclide Hlife 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 1.128E+00 1.166E+00 0.211E+00 18.06 1.03 1.617E+00 BI-212 1.671E+00 47.03 1.91Y 0.786E+00 PB-212 1.91Y 1.03 1.454E+00 1.503E+00 0.095E+00 6.34 PB-214 1600.00Y 1.00 1.261E+00 12.53 1.261E+00 0.158E+00 21.15 TH-232 1.41E+10Y 1.00 1.321E+00 1.321E+00 0.280E+00 -----______

Total Activity: 6.782E+00 6.923E+00

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma pCi/g Dry Nuclide 2-Sigma Error %Error Flags Hlife Decay pCi/g Dry AC-228 5.75Y 1.01 1.321E+00 1.336E+00 0.283E+00 21.15 _____ ______

> Total Activity: 1.321E+00 1.336E+00

Grand Total Activity : 2.892E+01 2.909E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"E" = Manually edited "A" = Nuclide specific abn. limit Page: 3
Acquisition date: 18-MAR-2022 11:13:52

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	46.49	680	2219	1.14	91.61	87	11	1.05E-02	31.7	6.56E+00	
0	77.36	1294	2679	1.07	153.33	151	7	2.00E-02	15.8	7.42E+00	
3	84.68	329	1666	1.55	167.97	164	13	5.07E-03	52.4	7.33E+00	
3	87.36	507	1494	1.05	173.31	164	13	7.82E-03	28.8	7.28E+00	
0	209.46	219	1285	1.42	417.44	414	8	3.38E-03	58.3	4.56E+00	
3	241.79	735	1432	1.84	482.08	469	19	1.13E-02	23.1	4.08E+00	
0	338.60	509	1047	1.16	675.65	671	10	7.86E-03	25.4	3.09E+00	
0	511.27	350	1045	2.56	1020.88	1012	20	5.40E-03	62.1	2.18E+00	
0	846.88	98	409	1.80	1691.90	1684	15	1.52E-03	* * * *	1.42E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 23
Number of unidentified lines 9
Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

2.000 0000	-1100						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Fla	gs
K-40	1.28E+09Y	1.00	1.515E+01	1.515E+01	0.136E+01	9.01	
BI-214	1600.00Y	1.00	9.712E-01	9.712E-01	1.597E-01	16.45	
RA-226	1600.00Y	1.00	2.480E+00	2.480E+00	1.263E+00	50.95	
RA-228	5.75Y	1.01	1.396E+00	1.411E+00	0.480E+00	34.01	
TH-234	4.47E+09Y	1.00	9.842E-01	9.842E-01	6.501E-01	66.05	
	Total Acti	vity :	2.098E+01	2.100E+01			

Nuclide Type : NATURAL

	andre andre		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	1.128E+00	1.166E+00	0.211E+00	18.06	
BI-212	1.91Y	1.03	1.617E+00	1.671E+00	0.786E+00	47.03	
PB-212	1.91Y	1.03	1.454E+00	1.503E+00	0.095E+00	6.34	
PB-214	1600.00Y	1.00	1.208E+00	1.208E+00	0.132E+00	10.96	
TH-232	1.41E+10Y	1.00	1.321E+00	1.321E+00	0.280E+00	21.15	
			both Front RAN STITE WHAT MADE WANT STITE STITE	MAN WAR AND PURE FIRST PART STATE MAN THAN			
	Total Acti	vity:	6.729E+00	6.870E+00			

Nuclide Type : natural

Nuclide AC-228		4	pci/g bry 1.321E+00	1 , 2	2-Sigma Error 0.283E+00	%Error 21.15	rrags
NT7	111 4 6 0	Dagara		4	Decay Corr	<i>-</i>	
			Wtd Mean	Wtd Mean			

Total Activity : 1.321E+00 1.336E+00

Grand Total Activity: 2.903E+01 2.921E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 TL-208 BI-212 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.515E+01 1.166E+00 1.671E+00 1.503E+00 9.712E-01 1.208E+00 2.480E+00 1.336E+00 1.411E+00 1.321E+00 9.842E-01	1.365E+00 2.106E-01 7.860E-01 9.526E-02 1.597E-01 1.324E-01 1.263E+00 2.826E-01 4.801E-01 2.795E-01 6.501E-01	5.901E-01 1.934E-01 8.171E-01 8.974E-02 4.827E-01 1.236E-01 1.063E+00 2.405E-01 4.568E-01 2.379E-01 7.594E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	25.680 6.030 2.046 16.747 2.012 9.777 2.332 5.555 3.090 5.554 1.296
Non-I	dentified Nuclide	es			
	Key-Line Activity K I	. Act error	ACM	MDA error	Act/MDA

1,011 10					
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60	5.008E-03	3.931E-02	6.667E-02	0.000E+00	0.075
CS-137	1.830E-02	4.361E-02	7.346E-02	0.000E+00	0.249
LA-138	-2.932E-04	5.592E-02	9.768E-02	0.000E+00	-0.003
PA-234M	4.433E+00	4.301E+00	7.617E+00	0.000E+00	0.582
U-235	-2.692E-01	2.017E-01	2.921E-01	0.000E+00	-0.922
U-238	4.433E+00	4.301E+00	7.617E+00	0.000E+00	0.582

```
A,11L95403-14
                    ,03/19/2022 05:14,02/13/2022 12:56,
                                                               4.170E+01,L95403-14 SS A
B,11L95403-14
                    , NORMK
                                            ,02/10/2022 09:58,11S50121819
C, K-40
           , YES,
                    1.515E+01,
                                   1.365E+00,
                                                 5.901E-01,,
                                                                 25.680
           , YES,
C, TL-208
                    1.166E+00,
                                   2.106E-01,
                                                 1.934E-01,
                                                                  6.030
C, BI-212
           , YES,
                                                 8.171E-01,,
                    1.671E+00,
                                   7.860E-01,
                                                                  2.046
C, PB-212
           , YES,
                    1.503E+00,
                                   9.526E-02,
                                                 8.974E-02,,
                                                                 16.747
C, BI-214
           , YES,
                    9.712E-01,
                                                 4.827E-01,,
                                   1.597E-01,
                                                                  2.012
C, PB-214
           , YES,
                    1.208E+00,
                                   1.324E-01,
                                                 1.236E-01,,
                                                                  9.777
C, RA-226
           , YES,
                    2.480E+00,
                                   1.263E+00,
                                                 1.063E+00,,
                                                                  2.332
C, AC-228
           , YES,
                    1.336E+00,
                                   2.826E-01,
                                                 2.405E-01,,
                                                                  5.555
           , YES,
C, RA-228
                    1.411E+00,
                                   4.801E-01,
                                                 4.568E-01,,
                                                                  3.090
C, TH-232
           , YES,
                                   2.795E-01,
                    1.321E+00,
                                                 2.379E-01,,
                                                                  5.554
           , YES,
C, TH-234
                    9.842E-01,
                                   6.501E-01,
                                                 7.594E-01,,
                                                                  1.296
C, CO-60
           , NO ,
                    5.008E-03,
                                   3.931E-02,
                                                 6.667E-02,,
                                                                  0.075
C, CS-137
           ,NO,
                    1.830E-02,
                                   4.361E-02,
                                                 7.346E-02,,
                                                                  0.249
C, LA-138
           ,NO,
                   -2.932E-04,
                                   5.592E-02,
                                                 9.768E-02,,
                                                                 -0.003
C, PA-234M
           NO ,
                    4.433E+00,
                                   4.301E+00,
                                                 7.617E+00,,
                                                                  0.582
                                                 2.921E-01,,
C, U-235
           ,NO,
                   -2.692E-01,
                                   2.017E-01,
                                                                 -0.922
C, U-238
           ,NO,
                    4.433E+00,
                                   4.301E+00,
                                                 7.617E+00,,
                                                                  0.582
```

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:07:48.56 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:13.44

LIMS No., Customer Name, Client ID: L95403-15 SS ANCHOR QEA

Sample ID : 06L95403-15 Smple Date: 13-FEB-2022 12:56:00.

Sample Type : SS

Geometry : 06S25031921 BKGFILE : 06BG030422MT

Quantity : 2.73000E+01 g Dry Start Channel: 80 Energy Tol : 2.00000

Real Time : 0 17:15:25.24

End Channel: 4090

Pk Srch Sens: 9.00000

Live time : 0 17:15:14.02

MDA Multiple : 4.6600 Library Used: NORMK

Peak Evaluation - Identified and Unidentified

		E-marginaria								
Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	77.22	365	1158	0.85	154.90	2 68E±00	5.88E-03	15 7	
2	Ö	92.95*	313	1500	1.71	186.30		5.05E-03		
3	0	185.64*	276	1672	0.93	371.33	6.13E+00	4.45E-03	32.1	
4	4	238.73*	1535	878	1.10	477.32	5.23E+00	2.47E-02	4.6	1.02E+00
5	4	242.02	483	1056	1.77	483.90	5.18E+00	7.78E-03	13.2	
6	0	295.50*	501	1130	1.19	590.64	4.43E+00	8.07E-03	14.9	
7	0	338.40	439	804	1.18	676.28	3.96E+00	7.06E-03	12.6	
8	0	352.12*	1078	761	1.22	703.67	3.83E+00	1.74E-02	6.5	
9	0	583.24*	416	517	1.37	1164.99	2.48E+00	6.69E-03	12.9	
10	0	609.40*	742	604	1.23	1217.21	2.38E+00	1.20E-02	8.4	
. 11	0	911.59*	334	332	1.78	1820.33	1.65E+00	5.38E-03	14.7	
12	0	969.40*	214	316	1.69	1935.69	1.56E+00	3.45E-03	20.4	
13	0	1120.55*	112	290	1.39	2237.33	1.36E+00	1.80E-03	35.8	
14	0	1461.16*	935	58	1.67	2916.98	1.07E+00	1.50E-02	4.8	
15	0	1765.00*	133	96	1.90	3523.18	9.41E-01	2.14E-03	21.2	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

11001100 1	150.						
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	935	10.67*	1.074E+00	1.300E+01	1.300E+01	9.61
BI-214	609.31	742	46.30	2.384E+00	1.072E+00	1.072E+00	16.87
	1120.29	112	15.10*	1.357E+00	8.709E-01	8.709E-01	71.67
	1764.49	133	15.80	9.412E-01	1.425E+00	1.425E+00	42.45
RA-226	186.21	276	3.28*	6.127E+00	2.192E+00	2.192E+00	64.30
RA-228	93.35	313	3.50	4.441E+00	3.214E+00	3.249E+00	51.09
	969.11	214	16.60*	1.555E+00	1.322E+00	1.337E+00	40.74
TH-234	63.29		3.80*	1.100E+00	Li	ne Not Found	
	92.60	313	5.41	4.441E+00	2.080E+00	2.080E+00	51.09
U-235	143.76		10.50*	6.538E+00	Li	ne Not Found	
	163.35		4.70	6.435E+00	Li	ne Not Found	
	185.71	276	54.00	6.127E+00	1.332E-01	1.332E-01	64.30
	205.31		4.70	5.795E+00	Li	ne Not Found	state while about down, regard states

L95403 273 of 332

Nucl	ide	Type:	NATURAL

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	416	30.25*	2.478E+00	8.836E-01	9.125E-01	25.72
PB-212	238.63	1535	44.60*	5.234E+00	1.048E+00	1.082E+00	9.14
PB-214	295.21	501	19.20	4.431E+00	9.393E-01	9.393E-01	29.72
	351.92	1078	37.20*	3.829E+00	1.207E+00	1.207E+00	12.92
TH-232	911.21	334	27.70*	1.648E+00	1.167E+00	1.167E+00	29.33

Nuclide Type: natural

					uncorrected	Decay Corr	z-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
AC-228	835.50		1.75	1.788E+00	Lir	ne Not Found	
	911.07	334	27.70*	1.648E+00	1.167E+00	1.179E+00	29.33

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 06L95403-15 Acquisition date : 17-MAR-2022 14:52:13

Total number of lines in spectrum 15 Number of unidentified lines 3

Number of lines tentatively identified by NID 12 80.00%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.300E+01	1.300E+01	0.125E+01	9.61
BI-214	1600.00Y	1.00	8.709E-01	8.709E-01	6.242E-01	71.67
RA-226	1600.00Y	1.00	2.192E+00	2.192E+00	1.410E+00	64.30
RA-228	5.75Y	1.01	1.322E+00	1.337E+00	0.545E+00	40.74
TH-234	4.47E+09Y	1.00	2.080E+00	2.080E+00	1.063E+00	51.09 K
U-235	7.04E+08Y	1.00	1.332E-01	1.332E-01	0.856E-01	64.30 K
			PPP DOT LOTE THE BASE AND ADDRESS AND ADDRESS AND			

Total Activity: 1.960E+01 1.961E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Fla	ags
TL-208	1.91Y	1.03	8.836E-01	9.125E-01	2.347E-01	25.72	_
PB-212	1.91Y	1.03	1.048E+00	1.082E+00	0.099E+00	9.14	
PB-214	1600.00Y	1.00	1.207E+00	1.207E+00	0.156E+00	12.92	
TH-232	1.41E+10Y	1.00	1.167E+00	1.167E+00	0.342E+00	29.33	
	makal zaki		4 2055.00	4 3 6 0 11 . 0 0			

Total Activity: 4.305E+00 4.368E+00

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
AC-228	5.75Y	1.01	1.167E+00	1.179E+00	0.346E+00	29.33

Total Activity: 1.167E+00 1.179E+00

Grand Total Activity : 2.507E+01 2.516E+01

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3
Sample ID: 06L95403-15 Acquisition date: 17-MAR-2022 14:52:13

Ita	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
. 0	77.22	365	1158	0.85	154 90	153	6	5 88E-03	31 5	2.68E+00	
-	242.02	483								5.18E+00	
0	338.40	439	804	1.18	676.28	672	9	7.06E-03	25.2	3.96E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 15
Number of unidentified lines 3
Number of lines tentatively identified by NID 12 80.00%

Nuclide Type :

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.300E+01	1.300E+01	0.125E+01	9.61	
BI-214	1600.00Y	1.00	1.085E+00	1.085E+00	0.167E+00	15.39	
RA-226	1600.00Y	1.00	2.192E+00	2.192E+00	1.410E+00	64.30	
RA-228	5.75Y	1.01	1.322E+00	1.337E+00	0.545E+00	40.74	
	Total Acti	.vity :	1.760E+01	1.761E+01			

Nuclide Type : NATURAL

	7 1.		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
TL-208	1.91Y	1.03	8.836E-01	9.125E-01	2.347E-01	25.72	9
PB-212	1.91Y	1.03	1.048E+00	1.082E+00	0.099E+00	9.14	
PB-214	1600.00Y	1.00	1.143E+00	1.143E+00	0.136E+00	11.91	
TH-232	1.41E+10Y	1.00	1.167E+00	1.167E+00	0.342E+00	29.33	
	Total Acti	vity:	4.241E+00	4.305E+00			

Nuclide Type : natural

AC-228			1.167E+00		0.346E+00		
Nuclide	Hlife	Decay	pCi/q Dry	pCi/a Drv	2-Sigma Error	%Error	Flags
					Decay Corr		
			Wtd Mean	Wtd Mean			

1.179E+00

Grand Total Activity: 2.301E+01 2.310E+01

Total Activity: 1.167E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

```
A,06L95403-15
                    ,03/18/2022 08:07,02/13/2022 12:56,
                                                              2.730E+01,L95403-15 SS A
B,06L95403-15
                    , NORMK
                                            ,10/29/2021 09:14,06S25031921
C, K-40
           , YES,
                    1.300E+01,
                                  1.249E+00,
                                                 6.662E-01,,
                                                                 19.510
           , YES,
C, TL-208
                    9.125E-01,
                                  2.347E-01,
                                                 2.057E-01,,
                                                                  4.437
           , YES,
C, PB-212
                    1.082E+00,
                                  9.896E-02,
                                                 9.928E-02,,
                                                                 10.901
C, BI-214
                                                 5.182E-01,,
           , YES,
                    1.085E+00,
                                  1.670E-01,
                                                                  2.093
C, PB-214
           , YES,
                    1.143E+00,
                                  1.361E-01,
                                                 1.323E-01,,
                                                                  8.641
           , YES,
C, RA-226
                    2.192E+00,
                                  1.410E+00,
                                                 1.229E+00,,
                                                                  1.783
                                                 2.543E-01,,
C, AC-228
           , YES,
                    1.179E+00,
                                  3.459E-01,
                                                                  4.637
                                                 5.559E-01,,
C, RA-228
           , YES,
                    1.337E+00,
                                  5.446E-01,
                                                                  2.404
C, TH-232
                    1.167E+00,
                                  3.423E-01,
                                                 2.517E-01,,
                                                                  4.636
           , YES,
C, CO-60
           ,NO,
                    8.179E-02,
                                  4.951E-02,
                                                 8.972E-02,,
                                                                  0.912
C, CS-137
                                                 8.369E-02,,
           ,NO,
                    7.635E-02,
                                  4.737E-02,
                                                                  0.912
                   -1.622E-03,
                                                 1.026E-01,,
C, LA-138
           ,NO,
                                  6.178E-02,
                                                                 -0.016
C, BI-212
                    4.119E-01,
                                  6.205E-01,
                                                 1.005E+00,,
           ,NO,
                                                                  0.410
C, PA-234M
           ,NO,
                    7.441E+00,
                                  5.008E+00,
                                                 8.736E+00,,
                                                                  0.852
C, TH-234
           ,NO,
                    1.282E+00,
                                  3.628E+00,
                                                 6.052E+00,,
                                                                  0.212
C, U-235
           ,NO,
                    1.491E-02,
                                                 3.533E-01,,
                                  2.197E-01,
                                                                  0.042
C, U-238
           ,NO,
                    7.441E+00,
                                  5.008E+00,
                                                 8.736E+00,,
                                                                  0.852
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:14:35.81 TBE01 33-TP20784A HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:13:54.25

LIMS No., Customer Name, Client ID: L95403-16 SS ANCHOR QEA

Sample ID : 01L95403-16 Smple Date: 13-FEB-2022 12:56:00.

Sample Type : SS

Quantity : 3.00000E+01 g Dry

Geometry : 01S25121819 BKGFILE : 01BG030422MT

Start Channel: 80

Energy Tol : 2.00000 Real Time : 0 18:00:08.67

End Channel : 4090 Pk Srch Sens: 9.0000 MDA Multiple : 4.6600 Library Used: NORMK

Pk Srch Sens: 9.00000 Live time : 0 18:00:00.00

Peak Evaluation / Identified and Unidentified

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2	2 2	74.79*. 77.04	642 1005	1734 1336	1.22	150.12 154.61	5.71E+00 6.10E+00	9.91E-03 1.55E-02	12.8 6.7	6.88E+00
3 4	1 1	87.35* 92.86*	214 570	2424 2067	0.93 1.64	175.21 186.22	7.65E+00 8.30E+00	3.31E-03 8.80E-03	44.0 17.5	3.72E+00 4.02E+00
5 6	1 1	185.81* 209.36	601 321	1727 1163	1.47	371.98 419.06	9.12E+00 8.51E+00	9.27E-03 4.96E-03	15.4 19.2	1.20E+00 1.87E+00
7 8	3 3	238.61* 241.58	2690 690	897 1172	1.13 1.52	477.51 483.45	7.80E+00 7.73E+00	4.15E-02 1.06E-02	2.9	1.67E+00
9 10	1 1	270.36 295.19*	390 744	923 997	1.69 1.16	540.96 590.61	7.11E+00 6.64E+00	6.02E-03 1.15E-02	14.9 9.5	1.25E+00 6.46E-01
11 12	1 1	338.31 351.91*	708 1300	934 1132	1.31 1.29	676.78 703.96	5.95E+00 5.76E+00	1.09E-02 2.01E-02		2.23E+00 1.15E+00
13 14	1 1	462.96 510.85*	261 307	716 921	1.85 2.79	925.93 1021.65	4.55E+00 4.17E+00	4.03E-03 4.74E-03	22.8	1.35E+00 2.30E+00
15 16	1 1	583.06* 609.16*	804 878	456 440	1.67	1166.00	3.71E+00 3.56E+00	1.24E-02 1.36E-02	6.9	3.63E+00 5.21E+00
17 18	1 1	661.68 727.11	102 316	387 405	1.31	1323.17	3.30E+00 3.02E+00	1.58E-03 4.88E-03	37.5 15.0	7.54E-01 3.02E+00
19 20	1	911.05* 968.99*	581 301	472 297	1.68 1.85	1821.71 1937.55	2.42E+00 2.28E+00	8.97E-03 4.64E-03	9.9	3.23E+00 2.22E+00
21 22	1 1 1	1120.42* 1460.71* 1764.34*	130 1670	284 123	1.99 2.38	2240.33 2920.80	1.98E+00 1.54E+00	2.00E-03 2.58E-02	30.8	1.61E+00 2.57E+00
23	1	1/04.34^	153	74	۷,44	3528.06	1.32E+00	2.36E-03	17.7	2.37E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1670	10.67*	1.540E+00	1.413E+01	1.413E+01	6.39
CS-137	661.66	102	85.12*	3.296E+00	5.072E-02	5.083E-02	74.99
BI-214	609.31	878	46.30	3.559E+00	7.411E-01	7.411E-01	12.28
	1120.29	130	15.10*	1.977E+00	6.047E-01	6.047E-01	61.55
	1764.49	153	15.80	1.323E+00	1.015E+00	1.016E+00	35.33

L95403 278 of 332

RA-226 RA-228	186.21 93.35 969.11	601 570 301	3.28* 3.50 16.60*	9.117E+00 8.297E+00 2.281E+00	2.794E+00 2.729E+00 1.105E+00	2.794E+00 2.759E+00 1.117E+00	30.87 35.07 27.39
TH-234	63.29	570	3.80* 5.41	3.510E+00 8.297E+00		ne Not Found 1.765E+00	35.07
U-235	143.76 163.35 185.71 205.31	601	10.50* 4.70 54.00 4.70	9.986E+00 9.656E+00 9.117E+00 8.614E+00	Lir 1.697E-01	ne Not Found ne Not Found 1.697E-01 ne Not Found	30.87
Nuclide T	ype: NATUR	AL			Indoxxoatod	Doggu Comm	2 Ciama
Nuclide	Pnorat	Area	%Abn	%Eff	Uncorrected pCi/q Dry	Decay Corr pCi/q Dry	2-Sigma
TL-208	Energy 583.17	804	30.25*	3.705E+00	9.968E-01	1.030E+00	%Error 13.73
BI-212	727.17	316	7.56*	3.015E+00	1.928E+00	1.993E+00	29.96
PB-212	238.63	2690	44.60*	7.796E+00	1.076E+00	1.112E+00	5.90
PB-214	295.21	744	19.20	6.640E+00	8.117E-01	8.117E-01	19.02
ID ZII	351.92	1300	37.20*	5.756E+00	8.442E-01	8.442E-01	13.51
TH-232	911.21	581	27.70*	2.424E+00	1.204E+00	1.204E+00	19.75
Nuclide T	ype: natur	al					
1.401140 1	1100. 110001	to t			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry		%Error
AC-228	835.50		1.75	2.638E+00		ne Not Found	
	911.07	581	27.70*	2.424E+00	1.204E+00	1.217E+00	19.75

Summary of Nuclide Activity Page: 2
Sample ID: 01L95403-16 Acquisition date: 18-MAR-2022 11:13:54

Total number of lines in spectrum 23
Number of unidentified lines 9

Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide pCi/g Dry Hlife pCi/g Dry 2-Sigma Error %Error Flags Decay K-40 1.28E+09Y 1.00 1.413E+01 1.413E+01 0.090E+01 6.39 CS-137 30.07Y 1.00 5.072E-02 5.083E-02 3.811E-02 74.99 BI-214 1.00 6.047E-01 1600.00Y 6.047E-01 3.722E-01 61.55 1.00 2.794E+00 RA-226 1600.00Y 2.794E+00 0.863E+00 30.87 RA-228 5.75Y 1.01 1.105E+00 1.117E+00 0.306E+00 27.39 TH-234 4.47E+09Y 1.00 1.765E+00 1.765E+00 0.619E+00 35.07 K 1.00 1.697E-01 U-235 7.04E+08Y 1.697E-01 0.524E-01 30.87 K _____ _____

Total Activity : 2.062E+01 2.063E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma pCi/g Dry Nuclide Hlife Decay pCi/q Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 9.968E-01 1.030E+00 0.141E+00 13.73 BI-212 1.91Y 1.03 1.928E+00 0.597E+00 29.96 1.993E+00 PB-212 1.91Y 1.03 1.076E+00 1.112E+00 0.066E+00 5.90 PB-214 1600.00Y 1.00 8.442E-01 8.442E-01 1.140E-01 13.51 1.00 1.204E+00 TH-232 1.41E+10Y 1.204E+00 0.238E+00 19.75 _ _ _ _ _ _ _ _ _ _ _____ 6.049E+00 6.183E+00 Total Activity:

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags

AC-228 5.75Y 1.01 1.204E+00 1.217E+00 0.240E+00 19.75

Total Activity: 1.204E+00 1.217E+00

Grand Total Activity : 2.787E+01 2.803E+01

Flags: "K" = Keyline not found "M" = Manually accepted

_ _ _ _ _ _ _ _ _

"E" = Manually edited "A" = Nuclide specific abn. limit

Page : Acquisition date : 18-MAR-2022 11:13:54

Ιt	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
2	74.79 77.04	642 1005	1734 1336	1.22	150.12 154.61			9.91E-03 1.55E-02		5.71E+00	
1	87.35	214	2424	0.93	175.21	170		3.31E-03		7.65E+00	
1	209.36	321	1163	1.10	419.06	415	8	4.96E-03	38.3	8.51E+00)
3	241.58	690	1172	1.52	483.45	470	19	1.06E-02	20.2	7.73E+00)
1	270.36	390	923	1.69	540.96	537	9	6.02E-03	29.8	7.11E+00)
1	338.31	708	934	1.31	676.78	671	11	1.09E-02	18.4	5.95E+00)
1	462.96	261	716	1.85	925.93	919	14	4.03E-03	45.6	4.55E+00)
1	510.85	307	921	2.79	1021.65	1013	19	4.74E-03	62.9	4.17E+00)

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 23 Number of unidentified lines 9 Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

11401140	Type.						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags	
K-40	1.28E+09Y	1.00	1.413E+01	1.413E+01	0.090E+01	6.39	
CS-137	30.07Y	1.00	5.072E-02	5.083E-02	3.811E-02	74.99	
BI-214	1600.00Y	1.00	7.495E-01	7.496E-01	0.859E-01	11.45	
RA-226	1600.00Y	1.00	2.794E+00	2.794E+00	0.863E+00	30.87	
RA-228	5.75Y	1.01	1.105E+00	1.117E+00	0.306E+00	27.39	
				come tome with more many trans banks and more			
	Total Acti	vity:	1.883E+01	1.884E+01			
Muglido	Type : NATU	TD 7\ T					
nucriae	Type: NAIO	KALI	Wtd Mean	Wtd Mean	Dogar Com	2 Ciama	

			wta Mean	wta Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	9.968E-01	1.030E+00	0.141E+00	13.73
BI-212	1.91Y	1.03	1.928E+00	1.993E+00	0.597E+00	29.96
PB-212	1.91Y	1.03	1.076E+00	1.112E+00	0.066E+00	5.90
PB-214	1600.00Y	1.00	8.327E-01	8.327E-01	0.917E-01	11.01
TH-232	1.41E+10Y	1.00	1.204E+00	1.204E+00	0.238E+00	19.75
			more book dank tools book book book tools book			
	Total Acti	vity:	6.037E+00	6.172E+00		

Nuclide Type : natural

	- -		Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.204E+00	1.217E+00	0.240E+00	19.75	

Total Activity : 1.204E+00 1.217E+00

Grand Total Activity : 2.607E+01 2.623E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 CS-137 TL-208 BI-212 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.413E+01 5.083E-02 1.030E+00 1.993E+00 1.112E+00 7.496E-01 8.327E-01 2.794E+00 1.217E+00 1.117E+00 1.204E+00	9.021E-01 3.811E-02 1.415E-01 5.971E-01 6.556E-02 8.586E-02 9.171E-02 8.625E-01 2.404E-01 3.059E-01 2.377E-01	4.186E-01 4.702E-02 1.276E-01 5.521E-01 6.110E-02 3.184E-01 8.104E-02 7.439E-01 1.597E-01 3.209E-01 1.580E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	33.745 1.081 8.074 3.610 18.197 2.354 10.276 3.756 7.620 3.480 7.618
Non-I	dentified Nuclide	es			
	Key-Line				

Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 LA-138 PA-234M TH-234 U-235 U-238	2.590E-02 -1.497E-02 1.675E+00 -1.911E-01 -9.953E-02 1.675E+00	3.103E-02 4.241E-02 3.619E+00 1.304E+00 1.562E-01 3.619E+00	5.304E-02 6.723E-02 5.544E+00 1.899E+00 2.190E-01 5.544E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.488 -0.223 0.302 -0.101 -0.454 0.302

```
A,01L95403-16
                    ,03/19/2022 05:14,02/13/2022 12:56,
                                                              3.000E+01,L95403-16 SS A
B,01L95403-16
                    , NORMK
                                           ,11/17/2021 15:33,01S25121819
C, K-40
           , YES,
                    1.413E+01,
                                  9.021E-01,
                                                 4.186E-01,,
                                                                 33.745
           , YES,
C, CS-137
                                                 4.702E-02,,
                    5.083E-02.
                                  3.811E-02,
                                                                  1.081
           , YES,
C, TL-208
                    1.030E+00,
                                  1.415E-01,
                                                 1.276E-01,,
                                                                  8.074
C, BI-212
           ,YES,
                    1.993E+00,
                                  5.971E-01,
                                                 5.521E-01,,
                                                                  3.610
C, PB-212
           , YES,
                    1.112E+00,
                                  6.556E-02,
                                                 6.110E-02,,
                                                                 18.197
           , YES,
C,BI-214
                    7.496E-01,
                                  8.586E-02,
                                                 3.184E-01,,
                                                                  2.354
C, PB-214
           , YES,
                    8.327E-01,
                                  9.171E-02,
                                                 8.104E-02,,
                                                                 10.276
C, RA-226
           , YES,
                    2.794E+00,
                                  8.625E-01,
                                                 7.439E-01,,
                                                                  3.756
C, AC-228
           , YES,
                    1.217E+00,
                                  2.404E-01,
                                                 1.597E-01,,
                                                                  7.620
C, RA-228
                    1.117E+00,
                                  3.059E-01,
           , YES,
                                                 3.209E-01,,
                                                                  3.480
                                                 1.580E-01,,
C, TH-232
           , YES,
                    1.204E+00,
                                  2.377E-01,
                                                                  7.618
C, CO-60
                                                 5.304E-02,,
           ,NO,
                    2.590E-02,
                                  3.103E-02,
                                                                  0.488
C, LA-138
           ,NO,
                   -1.497E-02,
                                  4.241E-02,
                                                 6.723E-02,,
                                                                 -0.223
C, PA-234M, NO,
                    1.675E+00,
                                  3.619E+00,
                                                 5.544E+00,,
                                                                  0.302
C, TH-234
           ,NO ,
                   -1.911E-01,
                                                 1.899E+00,,
                                  1.304E+00,
                                                                 -0.101
C, U-235
           ,NO ,
                                                 2.190E-01,,
                   -9.953E-02,
                                  1.562E-01,
                                                                 -0.454
C, U-238
                   1.675E+00,
           NO ,
                                  3.619E+00,
                                                 5.544E+00,,
                                                                 0.302
```

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-MAR-2022 05:19:13.81 TBE08 31-TP20610B HpGe ****** Aquisition Date/Time: 18-MAR-2022 11:18:21.75

LIMS No., Customer Name, Client ID: L95403-17 SS ANCHOR QEA

: 08L95403-17 Sample ID Smple Date: 13-FEB-2022 12:56:00.

Sample Type : SS Geometry : 08S50121919 : 4.41000E+01 g Dry BKGFILE Quantity : 08BG030422MT

End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 18:00:00.00 MDA Multiple : 4.6600 Library Used: NORMK

Peak Evaluation / Identified and Unidentified

										·
Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	4	75.26*	914	2487	1.70	156.63	3.71E+00	1.41E-02	12.1	6.17E+00
2	4	77.50*	820	1870	1.29	161.10	3.92E+00	1.27E-02	11.6	
3	2	87.73	430	1485	1.27	181.49	4.72E+00	6.64E-03	14.6	4.52E+00
4	2	90.30	354	2056	1.43	186.63	4.89E+00	5.46E-03	23.8	
5	2	93.17*	362	1419	1.25	192.36	5.05E+00	5.58E-03	21.8	
6	1	186.47*	543	2117	1.61	378.43	5.38E+00	8.37E-03	19.4	1.88E+00
7	1	209.84	365	1335	1.55	425.04	5.01E+00	5.63E-03	18.8	9.23E-01
8	5	239.22*	2770	1174	1.44	483.62	4.57E+00	4.28E-02	3.2	9.76E-01
9	5	242.16*	624	1424	2.01	489.48	4.53E+00	9.62E-03	16.2	
10	1	295.77*	754	951	1.51	596.39	3.86E+00	1.16E-02	9.2	2.27E+00
11	1	338.98*	670	1200	1.63	682.55	3.43E+00	1.03E-02	11.6	2.59E+00
12	1	352.43*	1137	1211	1.62	709.37	3.31E+00	1.75E-02	7.9	2.12E+00
13	1	463.55	183	622	1.75	930.91	2.57E+00	2.83E-03	26.7	1.27E+00
14	1	511.40*	263	1159	3.15	1026.29	2.35E+00	4.06E-03	40.3	1.39E+00
15	1	583.63*	801	631	1.60	1170.27	2.08E+00	1.24E-02	8.2	1.63E+00
16	1	609.63*	868	1052	1.74	1222.11	1.99E+00	1.34E-02	10.0	2.01E+00
17	1	727.31	214	441	1.93	1456.63	1.69E+00	3.30E-03	20.7	1.66E+00
18	1	911.28*	547	256	2.48	1823.21	1.37E+00	8.45E-03	8.8	4.86E+00
19	1	969.38*	335	270	2.11	1938.98	1.29E+00	5.18E-03	12.2	1.23E+00
20	1	1120.48*	223	310	2.36	2239.97	1.13E+00	3.44E-03	20.6	8.50E-01
21	1	1461.21*	1489	185	2.13	2918.48	8.98E-01	2.30E-02	3.9	5.21E-01
22	1	1765.13*	144	73	2.53	3523.42	7.71E-01	2.23E-03	19.3	1.43E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

TAGGILGE	Type.						
					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1489	10.67*	8.978E-01	1.470E+01	1.470E+01	7.76
BI-214	609.31	868	46.30	1.993E+00	8.898E-01	8.898E-01	20.09
	1120.29	223	15.10*	1.134E+00	1.231E+00	1.231E+00	41.22
	1764.49	144	15.80	7.706E-01	1.121E+00	1.121E+00	38.60
RA-226	186.21	543	3.28*	5.376E+00	2.910E+00	2.910E+00	38.72
RA-228	93.35	362	3.50	5.054E+00	1.934E+00	1.955E+00	43.66

L95403 284 of 332

Nuclide	Type:	NATURAL
11001100	T y D C •	T17 7 T O T C T T T

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
TL-208	583.17	801	30.25*	2.076E+00	1.205E+00	1.246E+00	16.41
BI-212	727.17	214	7.56*	1.690E+00	1.585E+00	1.638E+00	41.43
PB-212	238.63	2770	44.60*	4.572E+00	1.285E+00	1.328E+00	6.41
PB-214	295.21	754	19.20	3.857E+00	9.632E-01	9.633E-01	18.45
	351.92	1137	37.20*	3.309E+00	8.735E-01	8.735E-01	15.82
TH-232	911.21	547	27.70*	1.370E+00	1.364E+00	1.364E+00	17.61
PB-212 PB-214	238.63 295.21 351.92	2770 754 1137	44.60* 19.20 37.20*	4.572E+00 3.857E+00 3.309E+00	1.585E+00 1.285E+00 9.632E-01 8.735E-01	1.328E+00 9.633E-01 8.735E-01	6.41 18.45 15.82

Nuclide Type: natural

					Olicoll Cocoa Do	cay corr	z-bigina
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry p	Ci/g Dry	%Error
AC-228	835.50		1.75	1.485E+00	Line	Not Found	
	911.07	547	27.70*	1.370E+00	1.364E+00 1	.379E+00	17.61

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Sample ID: 08L95403-17 Acquisition date: 18-MAR-2022 11:18:21

Total number of lines in spectrum 22
Number of unidentified lines 9
Number of lines tentatively identified by NID 13

59.09%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Siqma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.470E+01 0.114E+01 7.76 1.470E+01 BI-214 1600.00Y 1.00 1.231E+00 1.231E+00 0.507E+00 41.22 RA-226 1600.00Y 1.00 2.910E+00 2.910E+00 1.127E+00 38.72 RA-228 5.75Y 1.01 1,477E+00 1.493E+00 0.363E+00 24.32 ______ _______ Total Activity: 2.031E+01 2.033E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.03 1.205E+00 1.246E+00 0.204E+00 16.41 BI-212 1.91Y 1.03 1.585E+00 1.638E+00 0.679E+00 41.43 PB-212 1.91Y 1.03 1.285E+00 1.328E+00 6.41 0.085E+00 PB-214 1600.00Y 1.00 8.735E-01 8.735E-01 1.382E-01 15.82 TH-232 1.41E+10Y 1.00 1.364E+00 1.364E+00 0.240E+00 17.61 _____ Total Activity: 6.312E+00 6.449E+00

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags AC-228 5.75Y 1.01 0.243E+00 1.364E+00 1.379E+00 17.61

1.379E+00

Grand Total Activity : 2.799E+01 2.816E+01

Total Activity:

Flags: "K" = Keyline not found "M" = Manually accepted

1.364E+00

"E" = Manually edited "A" = Nuclide specific abn. limit

Page :

Acquisition date : 18-MAR-2022 11:18:21

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
4	75.26	914	2487	1.70	156.63	149	17	1.41E-02	24.2	3.71E+00	
4	77.50	820	1870	1.29	161.10	149	17	1.27E-02	23.2	3.92E+00	
2	87.73	430	1485	1.27	181.49	179	20	6.64E-03	29.1	4.72E+00)
2	90.30	354	2056	1.43	186.63	179	20	5.46E-03	47.5	4.89E+00)
1	209.84	365	1335	1.55	425.04	421	9	5.63E-03	37.6	5.01E+00)
5	242.16	624	1424	2.01	489.48	476	19	9.62E-03	32.3	4.53E+00)
1	338.98	670	1200	1.63	682.55	676	12	1.03E-02	23.2	3.43E+00)
1	463.55	183	622	1.75	930.91	926	10	2.83E-03	53.4	2.57E+00)
1	511,40	263	1159	3.15	1026.29	1018	22	4.06E-03	80.7	2.35E+00)

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 22 Number of unidentified lines Number of lines tentatively identified by NID 13 59.09%

Nuclide Type :

			Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay		pCi/q Dry	2-Sigma Error	
		Decay	bcr/a pra	bcild pra	_	eritor rrays
K-40	1.28E+09Y	1.00	1.470E+01	1.470E+01	0.114E+01	7.76
BI-214	1600.00Y	1.00	9.530E-01	9.530E-01	1.571E-01	16.49
RA-226	1600.00Y	1.00	2.910E+00	2.910E+00	1.127E+00	38.72
RA-228	5.75Y	1.01	1.547E+00	1.564E+00	0.334E+00	21.37
	Total Acti	vity:	2.011E+01	2.012E+01		

Nuclide Type : NATURAL

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error E	Flags
TL-208	1.91Y	1.03	1.205E+00	1.246E+00	0.204E+00	16.41	
BI-212	1.91Y	1.03	1.585E+00	1.638E+00	0.679E+00	41.43	
PB-212	1.91Y	1.03	1.285E+00	1.328E+00	0.085E+00	6.41	
PB-214	1600.00Y	1.00	9.073E-01	9.074E-01	1.091E-01	12.02	
TH-232	1.41E+10Y	1.00	1.364E+00	1.364E+00	0.240E+00	17.61	
			July 2007 1070 Week 1976 Mad 1976 Mad 1008				
	Total Acti	vity :	6.346E+00	6.483E+00			

Nuclide Type : natural

HACTIAC	1 1 2 2 . 110001	- 0					
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.364E+00	1.379E+00	0.243E+00	17.61	

Total Activity: 1.364E+00 1.379E+00

Grand Total Activity : 2.782E+01 2.798E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40	1.470E+01	1.140E+00	4.844E-01	0.000E+00	30.336
TL-208	1.246E+00	2.045E-01	1.597E-01	0.000E+00	7.800
BI-212	1.638E+00	6.786E-01	7.183E-01	0.000E+00	2.280
PB-212	1.328E+00	8.515E-02	7.475E-02	0.000E+00	17.767
BI-214	9.530E-01	1.571E-01	3.643E-01	0.000E+00	2.616
PB-214	9.074E-01	1.091E-01	9.955E-02	0.000E+00	9.115
RA-226	2.910E+00	1.127E+00	9.135E-01	0.000E+00	3.186
AC-228	1.379E+00	2.429E-01	1.870E-01	0.000E+00	7.375
RA-228	1.564E+00	3.341E-01	4.057E-01	0.000E+00	3.855
TH-232	1.364E+00	2.402E-01	1.850E-01	0.000E+00	7.374
Non-I	dentified Nuclide	S			

Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 CS-137 LA-138 PA-234M TH-234	2.719E-02 6.139E-02 -1.650E-02 3.558E+00 1.751E+00	3.567E-02 3.749E-02 4.947E-02 3.697E+00 1.207E+00	6.152E-02 6.514E-02 7.987E-02 6.234E+00 1.978E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.442 0.942 -0.207 0.571 0.885
U-235 U-238	1.195E-01 3.558E+00	1.628E-01 3.697E+00	2.761E-01 6.234E+00	0.000E+00 0.000E+00	0.433 0.571

```
A,08L95403-17
                    ,03/19/2022 05:19,02/13/2022 12:56,
                                                               4.410E+01,L95403-17 SS A
B,08L95403-17
                    , NORMK
                                            ,11/17/2021 15:23,08S50121919
C, K-40
           , YES,
                    1.470E+01,
                                   1.140E+00,
                                                 4.844E-01,,
                                                                 30.336
C, TL-208
           , YES,
                    1.246E+00,
                                   2.045E-01,
                                                 1.597E-01,,
                                                                  7.800
           , YES,
C, BI-212
                    1.638E+00,
                                                 7.183E-01,,
                                   6.786E-01,
                                                                  2.280
C, PB-212
           , YES,
                                                 7.475E-02,,
                    1.328E+00,
                                   8.515E-02,
                                                                 17.767
           , YES,
C, BI-214
                    9.530E-01,
                                                 3.643E-01,,
                                   1.571E-01,
                                                                  2.616
C, PB-214
           , YES,
                    9.074E-01,
                                   1.091E-01,
                                                 9.955E-02,,
                                                                  9.115
C, RA-226
           , YES,
                    2.910E+00,
                                   1.127E+00,
                                                 9.135E-01,,
                                                                  3.186
C, AC-228
           , YES,
                                                 1.870E-01,,
                    1.379E+00,
                                   2.429E-01,
                                                                  7.375
C, RA-228
           , YES,
                    1.564E+00,
                                   3.341E-01,
                                                 4.057E-01,,
                                                                  3.855
C, TH-232
                                                 1.850E-01,,
           , YES,
                    1.364E+00,
                                   2.402E-01,
                                                                  7.374
C, CO-60
           ,NO,
                    2.719E-02,
                                   3.567E-02,
                                                 6.152E-02,,
                                                                  0.442
                                                 6.514E-02,,
C, CS-137
           ,NO ,
                    6.139E-02,
                                   3.749E-02,
                                                                  0.942
C, LA-138
           ,NO,
                   -1.650E-02,
                                   4.947E-02,
                                                 7.987E-02,,
                                                                 -0.207
C, PA-234M, NO,
                    3.558E+00,
                                   3.697E+00,
                                                 6.234E+00,,
                                                                  0.571
C, TH-234
           ,NO,
                    1.751E+00,
                                   1.207E+00,
                                                 1.978E+00,,
                                                                  0.885
C, U-235
           ,NO,
                    1.195E-01,
                                  1.628E-01,
                                                 2.761E-01,,
                                                                  0.433
C, U-238
           ,NO,
                    3.558E+00,
                                  3.697E+00,
                                                 6.234E+00,,
                                                                  0.571
```

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 18-MAR-2022 08:08:11.83 TBE13 31-TP10727B HpGe ****** Aquisition Date/Time: 17-MAR-2022 14:52:14.24

LIMS No., Customer Name, Client ID: L95403-18 SS ANCHOR QEA

Sample ID : 13L95403-18 Smple Date: 13-FEB-2022 12:56:00.

Sample Type : SS Geometry : 13S25030421 Quantity : 2.36000E+01 g Dry BKGFILE : 13BG030422MT

End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 17:15:33.44 MDA Multiple : 4.6600 Library Used: NORMK

Peak Evaluation - Identified and Unidentfied

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	74.93*	160	1516	0.70	149.77	3.49E+00	2.58E-03	43.3	1.95E+01
2	1	77.16*	338	927	0.69	154.21	3.83E+00	5.43E-03	15.7	4.61E+01
3	8	84.63*	182	1231	1.28	169.11	4.93E+00	2.93E-03	37.9	1.48E+00
4	8	87.18*	348	1017	1.10	174.20	5.27E+00	5.60E-03	17.8	
5	1	92.78*	366	1123	1.13	185.37	5.96E+00	5.90E-03	18.3	5.19E+00
6	1	185.74*	327	1279	1.06	370.86	7.62E+00	5.26E-03	22.6	1.78E+00
7	1	208.79	316	932	1.36	416.86	7.12E+00	5.09E-03	17.4	5.76E+00
8	5	238.47*	1991	650	0.94	476.10	6.49E+00	3.20E-02	3.5	5.76E+00
9	5	241.36	659	857	1.53	481.87	6.43E+00	1.06E-02	10.0	
10	1	295.01*	684	987	1.20	588.94	5.49E+00	1.10E-02	10.6	1.05E+00
11	1	338.13*	428	669	1.05	675.01	4.91E+00	6.90E-03	13.1	1.15E+00
12	1	351.70*	997	809	1.12	702.09	4.75E+00	1.60E-02	7.2	1.59E+00
13	1	463.01	157	477	1.46	924.32	3.75E+00	2.53E-03	27.3	3.58E+00
14	1	510.70*	436	856	2.38	1019.53	3.44E+00	7.01E-03	19.3	1.16E+00
15	1	582.90*	516	469	1.30	1163.72	3.06E+00	8.31E-03	10.2	6.49E-01
16	1	608.97*	784	463	1.26	1215.79	2.94E+00	1.26E-02	7.3	2.00E+00
17	1.	661.33	186	254	1.96	1320.36	2.72E+00	2.99E-03	17.9	2.32E+00
18	1	726.93*	122	392	1.53	1451.39	2.49E+00	1.96E-03	36.3	9.36E-01
19	1	910.82*	436	189	2.03	1818.80	2.00E+00	7.02E-03	9.4	3.59E+00
20	1	968.83*	218	183	1.76	1934.73	1.88E+00	3.51E-03	14.6	2.49E+00
21	1	1120.24*	148	234	2.21	2237.39	1.62E+00	2.38E-03	27.4	8.74E-01
22	1	1460.38*	1182	77	2.15	2917.62	1.25E+00	1.90E-02	3.9	2.22E+00
23	1	1764.09*	102	84	2.15	3525.35	1.05E+00	1.65E-03	27.0	8.73E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1182	10.67*	1.246E+00	1.639E+01	1.639E+01	7.86
CS-137	661.66	186	85.12*	2.723E+00	1.477E-01	1.480E-01	35.79
BI-214	609.31	784	46.30	2.937E+00	1.062E+00	1.062E+00	14.69
	1120.29	148	15.10*	1.623E+00	1.114E+00	1.114E+00	54.78
	1764.49	102	15.80	1.054E+00	1.134E+00	1.134E+00	54.01
						105400 000 6	200

L95403 290 of 332

RA-226 RA-228 TH-234 U-235	186.21 93.35 969.11 63.29 92.60 143.76 163.35 185.71 205.31	327 366 218 366 327	3.28* 3.50 16.60* 3.80* 5.41 10.50* 4.70 54.00 4.70	7.616E+00 5.959E+00 1.881E+00 1.737E+00 5.959E+00 8.228E+00 8.037E+00 7.616E+00 7.191E+00	2.413E+00 2.413E+00 3.238E+00 3.273E+00 1.287E+00 1.301E+00 Line Not Found 2.095E+00 2.095E+00 Line Not Found Line Not Found 1.466E-01 1.466E-01 Line Not Found	36.56 45.13
Nuclide Ty Nuclide TL-208 BI-212 PB-212 PB-214 TH-232	pe: NATUR Energy 583.17 727.17 238.63 295.21 351.92 911.21	AL Area 516 122 1991 684 997 436	%Abn 30.25* 7.56* 44.60* 19.20 37.20* 27.70*	%Eff 3.056E+00 2.492E+00 6.490E+00 5.495E+00 4.746E+00 2.001E+00	Uncorrected Decay Corr pCi/g Dry pCi/g Dry 1.030E+00 1.063E+00 1.194E+00 1.233E+00 1.268E+00 1.310E+00 1.195E+00 1.195E+00 1.041E+00 1.041E+00 1.451E+00 1.451E+00	2-Sigma %Error 20.35 72.64 6.97 21.13 14.32 18.81
Nuclide Ty Nuclide AC-228	pe: natur Energy 835.50 911.07	al Area 436	%Abn 1.75 27.70*	%Eff 2.179E+00 2.001E+00	Uncorrected Decay Corr pCi/g Dry pCi/g Dry Line Not Found 1.451E+00 1.466E+00	%Error

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2 Acquisition date : 17-MAR-2022 14:52:14 Sample ID : 13L95403-18

Total number of lines in spectrum 23 Number of unidentified lines 9

Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.639E+01	1.639E+01	0.129E+01	7.86	-
CS-137	30.07Y	1.00	1.477E-01	1.480E-01	0.530E-01	35.79	
BI-214	1600.00Y	1.00	1.114E+00	1.114E+00	0.610E+00	54.78	
RA-226	1600.00Y	1.00	2.413E+00	2.413E+00	1.089E+00	45.13	
RA-228	5.75Y	1.01	1.287E+00	1.301E+00	0.381E+00	29.28	
TH-234	4.47E+09Y	1.00	2.095E+00	2.095E+00	0.766E+00	36.56	K
U-235	7.04E+08Y	1.00	1.466E-01	1.466E-01	0.662E-01	45.13	K
	motal Nati	t	2 2 C O E L O 1	2 2615.01			

Total Activity : 2.360E+01 2.361E+01

Nuclide Type : NATURAL

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	1.030E+00	1.063E+00	0.216E+00	20.35
BI-212	1.91Y	1.03	1.194E+00	1.233E+00	0.896E+00	72.64
PB-212	1.91Y	1.03	1.268E+00	1.310E+00	0.091E+00	6.97
PB-214	1600.00Y	1.00	1.041E+00	1.041E+00	0.149E+00	14.32
TH-232	1.41E+10Y	1.00	1.451E+00	1.451E+00	0.273E+00	18.81
	Total Acti	vity:	5.983E+00	6.097E+00		

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Fla	gs
AC-228	5.75Y	1.01	1.451E+00	1.466E+00	0.276E+00	18.81	
	Total Acti	Lvity :	1.451E+00	1.466E+00			

Grand Total Activity: 3.103E+01 3.117E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3
Acquisition date: 17-MAR-2022 14:52:14

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
. 1	74.93	160	1516	0.70	149.77	147	-	2.58E-03		3.49E+00	
1	77.16	338	927	0.69	154.21	153	4	5.43E-03	31.5	3.83E+00	
8	84.63	182	1231	1.28	169.11	165	13	2.93E-03	75.9	4.93E+00	
8	87.18	348	1017	1.10	174.20	165	13	5.60E-03	35.6	5.27E+00	
1	208.79	316	932	1.36	416.86	413	8	5.09E-03	34.9	7.12E+00	
5	241.36	659	857	1.53	481.87	472	14	1.06E-02	19.9	6.43E+00	
1	338.13	428	669	1.05	675.01	671	9	6.90E-03	26.2	4.91E+00	
1	463.01	157	477	1.46	924.32	920	10	2.53E-03	54.6	3.75E+00	
1	510.70	436	856	2.38	1019.53	1013	16	7.01E-03	38.5	3.44E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 23
Number of unidentified lines 9
Number of lines tentatively identified by NID 14 60.87%

Nuclide Type :

			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.639E+01	1.639E+01	0.129E+01	7.86
CS-137	30.07Y	1.00	1.477E-01	1.480E-01	0.530E-01	35.79
BI-214	1600.00Y	1.00	1.069E+00	1.069E+00	0.147E+00	13.73
RA-226	1600.00Y	1.00	2.413E+00	2.413E+00	1.089E+00	45.13
RA-228	5.75Y	1.01	1.287E+00	1.301E+00	0.381E+00	29.28
4			parties about about graph about graph filed private graph			
	Total Acti	.vity :	2.131E+01	2.132E+01		

Nuclide Type : NATURAL

	7 1		Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error Flags
TL-208	1.91Y	1.03	1.030E+00	1.063E+00	0.216E+00	20.35
BI-212	1.91Y	1.03	1.194E+00	1.233E+00	0.896E+00	72.64
PB-212	1.91Y	1.03	1.268E+00	1.310E+00	0.091E+00	6.97
PB-214	1600.00Y	1.00	1.081E+00	1.081E+00	0.128E+00	11.88
TH-232	1.41E+10Y	1.00	1.451E+00	1.451E+00	0.273E+00	18.81
	Total Acti	.vity :	6.023E+00	6.137E+00		

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.451E+00	1.466E+00	0.276E+00	18.81	

Total Activity : 1.451E+00 1.466E+00

Grand Total Activity: 2.878E+01 2.893E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed
Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 CS-137 TL-208 BI-212 PB-212 BI-214 PB-214 RA-226	1.639E+01 1.480E-01 1.063E+00 1.233E+00 1.310E+00 1.069E+00 1.081E+00 2.413E+00	1.289E+00 5.297E-02 2.164E-01 8.959E-01 9.121E-02 1.468E-01 1.284E-01 1.089E+00	6.188E-01 6.012E-02 1.671E-01 7.092E-01 7.900E-02 4.646E-01 1.014E-01 9.201E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	26.492 2.462 6.361 1.739 16.576 2.302 10.659 2.623
AC-228 RA-228 TH-232	1.466E+00 1.301E+00 1.451E+00	2.758E-01 3.809E-01 2.728E-01	2.018E-01 4.371E-01 1.997E-01	0.000E+00 0.000E+00 0.000E+00	7.266 2.975 7.265
Non-Ide	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
GO 60	7 1425 02	4 001E 00	C 000E 00	0 00000	0 100

```
A,13L95403-18
                                                               2.360E+01,L95403-18 SS A
                    ,03/18/2022 08:08,02/13/2022 12:56,
B,13L95403-18
                    , NORMK
                                            ,03/22/2021 07:43,13525030421
C, K-40
                                  1.289E+00,
           , YES,
                    1.639E+01,
                                                 6.188E-01,
                                                                 26.492
           , YES,
C, CS-137
                    1.480E-01,
                                                                  2.462
                                  5.297E-02,
                                                 6.012E-02,,
C, TL-208
           , YES,
                    1.063E+00,
                                  2.164E-01,
                                                 1.671E-01,,
                                                                  6.361
C, BI-212
           , YES,
                    1.233E+00,
                                  8.959E-01,
                                                 7.092E-01,,
                                                                  1.739
C, PB-212
           , YES,
                    1.310E+00,
                                  9.121E-02,
                                                 7.900E-02,,
                                                                 16.576
           , YES,
C, BI-214
                    1.069E+00,
                                  1.468E-01,
                                                 4.646E-01,
                                                                  2.302
C, PB-214
           , YES,
                    1.081E+00,
                                  1.284E-01,
                                                 1.014E-01,,
                                                                 10.659
C, RA-226
           , YES,
                    2.413E+00,
                                                 9.201E-01,,
                                  1.089E+00,
                                                                  2.623
C, AC-228
                    1.466E+00,
           , YES,
                                  2.758E-01,
                                                 2.018E-01,,
                                                                  7.266
C, RA-228
           , YES,
                    1.301E+00,
                                  3.809E-01,
                                                 4.371E-01,,
                                                                  2.975
C, TH-232
           , YES,
                    1.451E+00,
                                  2.728E-01,
                                                 1.997E-01,,
                                                                  7.265
C, CO-60
           ,NO,
                                                 6.988E-02,,
                   -7.143E-03,
                                  4.221E-02,
                                                                 -0.102
                                                 9.794E-02,,
C, LA-138
           ,NO,
                   -8.849E-03,
                                  5.964E-02,
                                                                 -0.090
C, PA-234M , NO ,
                                                 6.886E+00,,
                    2.807E+00,
                                  4.029E+00,
                                                                  0.408
C, TH-234
           ,NO,
                    6.827E-01,
                                                 3.468E+00,,
                                  2.341E+00,
                                                                  0.197
           ,NO,
                    4.240E-02,
                                                 2.707E-01,,
C, U-235
                                  1.709E-01,
                                                                  0.157
C, U-238
           , NO ,
                    2.807E+00,
                                  4.029E+00,
                                                 6.886E+00,,
                                                                  0.408
```

Analyst:

VAY/VMC Tolodyno Prown Fra Laboratory Campa Report, 22 MAR 2022 07,26,21 60

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 22-MAR-2022 07:26:21.60 TBE08 31-TP20610B HpGe ****** Aquisition Date/Time: 21-MAR-2022 13:49:14.08

LIMS No., Customer Name, Client ID: L95403-19 SS ANCHOR QEA

Sample ID : 08L95403-19 Smple Date: 13-FEB-2022 12:56:00.

End Channel: 4090 Pk Srch Sens: 9.00000 MDA Multiple: 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

a

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
-	_			7 77 4 7	3 F 1	150 00	2 527 00			
1	3	73.36	461	1741	1.54	152.83		7.27E-03		1.51E+00
2	3	75.58*	975	1974	1.26	157.26	3.74E+00	1.54E-02	9.7	
, 3	3	77.72	1319	1709	1.19	161.54		2.08E-02	6.1	
4	6	85.22*	443	1860	1.89	176.49		6.99E-03		2.78E+00
5	6	88.00	599	1411	1.22	182.04	4.74E+00	9.45E-03	11.4	
. 6	6	90.59	452	1764	1.44	187.21	4.91E+00	7.13E-03	17.8	
.7	6	93.43*	600	1720	1.49	192.87	5.07E+00	9.46E-03	15.0	
8	1	186.78*	529	1955	1.47	379.05	5.37E+00	8.35E-03	18.2	1.18E+00
9	1	210.01	290	1681	1.37	425.37	5.01E+00	4.57E-03	27.0	1.89E+00
10	1	239.46*	2563	1800	1.22	484.10	4.57E+00	4.04E-02	3.8	1.94E+00
11	1	242.58*	454	1088	1.44	490.33	4.52E+00	7.17E-03	14.7	3.79E-01
12	1	296.03*	1003	1321	1.43	596.90	3.85E+00	1.58E-02	8.5	4.96E-01
13	1	339.16*	649	918	1.44	682.90	3.42E+00	1.02E-02	10.3	6.11E-01
14	1	352.71*	1557	962	1.47	709.93	3.31E+00	2.46E-02	5.2	1.00E+00
15	1	511.54*	453	1006	2.87	1026.58	2.35E+00	7.15E-03	21.4	2.09E+00
16	1	583.89*	816	631	1.57	1170.79	2.08E+00	1.29E-02	7.8	3.07E-01
1:7	1	609,95*	1167	612	1.67	1222.74	1.99E+00	1.84E-02	5.8	8.70E-01
18	1	662.38	146	531	1.43	1327.23	1.84E+00	2.30E-03	32.6	8.81E-01
19	1	727.77	235	317	1.66	1457.56	1.69E+00	3.71E-03	15.2	4.92E+00
20	1	768.74	242	375	2.83	1539.21	1.60E+00	3.83E-03	17.7	1.55E+00
21	1	911.81*	549	356	1.76	1824.28	1.37E+00	8.66E-03	9.2	6.68E-01
22	1	969.90*	391	304		1940.00	1.29E+00	6.17E-03	11.9	3.48E+00
23	1	1120.87*	242	247		2240.73	1.13E+00	3.83E-03	16.1	5.38E-01
24	1	1461.59*	1659	122		2919.24		2.62E-02		1.21E+00
25	1	1765.70*	234	79	2.27	3524.56	7.70E-01	3.70E-03	12.8	9.21E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	# L				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1659	10.67*	8.976E-01	1.505E+01	1.505E+01	6.69
CS-137	661.66	146	85.12*	1.844E+00	8.068E-02	8.087E-02	65.27
BI-214	609.31	1167	46.30	1.992E+00	1.099E+00	1.099E+00	11.52

L95403 296 of 332

						,	,
RA-226 RA-228	1120.29 1764.49 186.21 93.35 969.11	242 234 529 600 391	15.10* 15.80 3.28* 3.50 16.60*	1.133E+00 7.704E-01 5.371E+00 5.068E+00 1.293E+00	2.610E+00	1.231E+00 1.673E+00 2.610E+00 2.973E+00 1.601E+00	32.18 25.64 36.32 30.05 23.86
Nuclide Ty	vpe: NATURA	λL					
_	_				Uncorrected	Decav Corr	2-Siqma
Nuclide	Energy	Area	%Abn	%Eff	pCi/q Dry	pCi/q Dry	%Error
TL-208	583.17	816	30.25*	2.076E+00	1.129E+00	1.170E+00	15.70
BI-212	727.17	235	7.56*	1.689E+00	1.598E+00	1.657E+00	30.36
PB-212	238.63	2563	44.60*	4.569E+00	1.092E+00	1.132E+00	7.65
PB-214	295.21	1003	19.20	3.854E+00	1.178E+00	1.178E+00	16.99
	351.92	1557	37.20*	3.307E+00	1.099E+00	1.099E+00	10.42
TH-232	911.21	549	27.70*	1.369E+00	1.257E+00	1.257E+00	18.44
N 1 4 3 - 171-		- 7					
Nuclide Ty	pe: natura	₹⊥					
אדיים בין לי מורי	T1	7	0.701	0 77 5 5	Uncorrected		2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry		%Error
AC-228	835.50	 	1.75	1.485E+00		ne Not Found	
	911.07	549	27.70*	1.369E+00	1.257E+00	1.272E+00	18.44

Flag: "*" = Keyline

Summary of Nuclide Activity Page : Sample ID : 08L95403-19 Acquisition date : 21-MAR-2022 13:49:14

Total number of lines in spectrum 25 Number of unidentified lines 11

Number of lines tentatively identified by NID 14 56.00%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Siqma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags 0.101E+01 K-40 1.28E+09Y 1.00 1.505E+01 1.505E+01 6.69 CS-137 30.07Y 1.00 8.068E-02 8.087E-02 65.27 5.278E-02 1.00 1.230E+00 BI-214 1600.00Y 1.231E+00 0.396E+00 32.18 RA-226 1600.00Y 1.00 2.610E+00 2.610E+00 0.948E+00 36.32 RA-228 5.75Y 1.01 1.582E+00 1.601E+00 0.382E+00 23.86 _ _ _ _ _ _ _ _ _ ______ 2.057E+01

Total Activity : 2.055E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.04 1.129E+00 1.170E+00 0.184E+00 15.70 BI-212 1.04 1.598E+00 1.91Y 1.657E+00 0.503E+00 30.36 1.91Y PB-212 1.04 1.092E+00 7.65 1.132E+00 0.087E+00 PB-214 1600.00Y 1.00 1.099E+00 1.099E+00 0.115E+00 10.42 TH-232 1.41E+10Y 1.00 1.257E+00 1.257E+00 0.232E+00 18.44 _____

Total Activity : 6.176E+00 6.316E+00

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/q Dry pCi/q Dry 2-Sigma Error %Error Flags 1.01 AC-228 5.75Y 1.257E+00 1.272E+00 0.235E+00 18.44

_____ Total Activity : 1.257E+00 1.272E+00

Grand Total Activity : 2.798E+01 2.816E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
3	73.36	461	1741	1.54	152.83	149	17	7.27E-03	31.6	3.53E+00)
3	75.58	975	1974	1.26	157.26	149	17	1.54E-02	19.4	3.74E+00	1
3	77.72	1319	1709	1.19	161.54	149	17	2.08E-02	12.3	3.94E+00	1
6	85.22	443	1860	1.89	176.49	172	28	6.99E-03	39.7	4.55E+00	1
6	88.00	599	1411	1.22	182.04	172	28	9.45E-03	22.8	4.74E+00	1
6	90.59	452	1764	1.44	187.21	172	28	7.13E-03	35.7	4.91E+00	
1	210.01	290	1681	1.37	425.37	421	10	4.57E-03	53.9	5.01E+00	1
1	242.58	454	1088	1.44	490.33	488	7	7.17E-03	29.5	4.52E+00	1
1	339.16	649	918	1.44	682.90	678	10	1.02E-02	20.5	3.42E+00	1
1	511.54	453	1006	2.87	1026.58	1019	19	7.15E-03	42.7	2.35E+00	1
1	768.74	242	375	2.83	1539.21	1533	13	3.83E-03	35.5	1.60E+00)

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 25
Number of unidentified lines 11
Number of lines tentatively identified by NID 14 56.00%

Nuclide Type :

Nuclide	Type :					
K-40 CS-137 BI-214	Hlife 1.28E+09Y 30.07Y 1600.00Y 1600.00Y 5.75Y	Decay 1.00 1.00 1.00 1.00	1.505E+01 8.068E-02 1.152E+00 2.610E+00	Wtd Mean Decay Corr pCi/g Dry 1.505E+01 8.087E-02 1.152E+00 2.610E+00 1.813E+00	Decay Corr 2-Sigma Error 0.101E+01 5.278E-02 0.116E+00 0.948E+00 0.351E+00	
	Total Activ	vity :	2.068E+01	2.070E+01		
Nuclide	Type : NATUR	RAL	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Doggy Corr	2. Ciama
Nuclide TL-208 BI-212 PB-212 PB-214 TH-232	Hlife 1.91Y 1.91Y 1.91Y 1600.00Y 1.41E+10Y	1.04 1.04 1.00 1.00	pCi/g Dry 1.129E+00 1.598E+00 1.092E+00 1.119E+00 1.257E+00	pCi/g Dry 1.170E+00 1.657E+00 1.132E+00	0.087E+00	%Error Flags 15.70 30.36 7.65
Nuclide	Type : natu	ral				
Nuclide AC-228	Hlife 5.75Y	Decay 1.01	Wtd Mean Uncorrected pCi/g Dry 1.257E+00	pCi/g Dry	Decay Corr 2-Sigma Error 0.235E+00	%Error Flags

Grand Total Activity: 2.813E+01 2.831E+01

Total Activity: 1.257E+00 1.272E+00

Flags: "K" = Keyline not found "E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 CS-137 TL-208 BI-212 PB-212 BI-214 PB-214	1.505E+01 8.087E-02 1.170E+00 1.657E+00 1.132E+00 1.152E+00	1.007E+00 5.278E-02 1.837E-01 5.030E-01 8.669E-02 1.161E-01 9.945E-02	4.644E-01 5.564E-02 1.391E-01 6.480E-01 7.357E-02 3.670E-01 9.115E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	32.397 1.454 8.417 2.557 15.392 3.139
RA-226 AC-228 RA-228 TH-232	2.610E+00 1.272E+00 1.813E+00 1.257E+00	9.479E-01 2.347E-01 3.512E-01 2.319E-01	8.758E-01 1.936E-01 3.933E-01 1.858E-01	0.000E+00 0.000E+00 0.000E+00	2.980 6.571 4.609 6.766
Non-I	dentified Nuclide Key-Line				,
	Activity K T	. Act error	MD 7/	MDA arror	$\lambda \sim t / M D \lambda$

Nuclide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
CO-60 LA-138 PA-234M TH-234 U-235	3.305E-03 2.527E-03 3.023E+00 3.321E-02 -5.777E-02	3.066E-02 4.490E-02 3.568E+00 1.124E+00 1.509E-01	5.114E-02 7.435E-02 5.974E+00 1.793E+00 2.508E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.065 0.034 0.506 0.019
U-238	3.023E+00	3.568E+00	5.974E+00	0.000E+00	0.506

```
A,08L95403-19
                    ,03/22/2022 07:26,02/13/2022 12:56,
                                                              4.910E+01,L95403-19 SS A
                    , NORMK
B,08L95403-19
                                            ,11/17/2021 15:23,08S50121919
           , YES,
C, K-40
                    1.505E+01,
                                  1.007E+00.
                                                 4.644E-01,,
                                                                 32.397
           , YES,
C, CS-137
                    8.087E-02,
                                  5.278E-02,
                                                 5.564E-02,,
                                                                  1.454
           , YES,
                                                 1.391E-01,,
C, TL-208
                    1.170E+00,
                                  1.837E-01,
                                                                  8.417
C,BI-212
           , YES,
                    1.657E+00,
                                  5.030E-01,
                                                 6.480E-01,,
                                                                  2.557
           , YES,
C, PB-212
                    1.132E+00,
                                                 7.357E-02,,
                                                                 15.392
                                  8.669E-02,
C,BI-214
           , YES,
                    1.152E+00,
                                  1.161E-01,
                                                 3.670E-01,,
                                                                  3.139
           , YES,
C, PB-214
                    1.119E+00,
                                  9.945E-02,
                                                 9.115E-02,,
                                                                 12.274
C, RA-226
           , YES,
                    2.610E+00,
                                  9.479E-01,
                                                 8.758E-01,,
                                                                  2.980
           , YES,
C, AC-228
                    1.272E+00,
                                  2.347E-01,
                                                 1.936E-01,,
                                                                  6.571
C, RA-228
           , YES,
                    1.813E+00,
                                  3.512E-01,
                                                 3.933E-01,,
                                                                  4.609
           , YES,
C, TH-232
                    1.257E+00,
                                  2.319E-01,
                                                 1.858E-01,,
                                                                  6.766
C, CO-60
                    3.305E-03,
                                                 5.114E-02,,
           ,NO ,
                                  3.066E-02,
                                                                  0.065
           ,NO,
                                                 7.435E-02,,
C, LA-138
                    2.527E-03,
                                  4.490E-02,
                                                                  0.034
C, PA-234M , NO ,
                    3.023E+00,
                                  3.568E+00,
                                                 5.974E+00,,
                                                                  0.506
C, TH-234
           ,NO,
                    3.321E-02,
                                  1.124E+00,
                                                 1.793E+00,,
                                                                  0.019
C, U-235
           ,NO,
                                                 2.508E-01,,
                   -5.777E-02,
                                  1.509E-01,
                                                                 -0.230
C, U-238
           NO ,
                    3.023E+00,
                                  3.568E+00,
                                                 5.974E+00,,
                                                                  0.506
```

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 22-MAR-2022 07:26:34.51 TBE06 33-TP10933A HpGe ****** Aquisition Date/Time: 21-MAR-2022 13:49:13.85

LIMS No., Customer Name, Client ID: L95403-20 SS ANCHOR QEA

Sample ID : 06L95403-20 Smple Date: 13-FEB-2022 13:00:00.

Sample Type : SS

Geometry : 06S50031621 : 06BG030422MT Quantity : 5.36000E+01 g Dry BKGFILE Start Channel: 80 Energy Tol : 2.00000 Real Time : 0 17:37:14.99 End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 17:37:02.96

MDA Multiple : 4.6600 Library Used: NORMK Peak Evaluation - Identified and Unidentified

Pk It Bkqnd FWHM Channel %Eff Cts/Sec %Err Energy Fit Area 3 74.90* 407 1332 0.85 150.27 1.68E+00 6.42E-03 16.1 1.44E+00 1 2 3 0.82 77.14 573 1215 154.74 1.84E+00 9.04E-03 10.1 3 0 87.24 376 1309 1.19 174.90 2.53E+00 5.93E-03 16.0 4 0 92.84* 1504 1.32 186.09 2.87E+00 6.04E-03 19.8 383 5 0 185.91* 437 1412 1.21 371.89 4.02E+00 6.88E-03 17.9 6 0 209.33 250 1136 0.79 418.63 3.79E+00 3.94E-03 23.2 7 1.08 477.41 238.78* 2518 947 3.48E+00 3.97E-02 3.0 1.82E+00 8 4 241.75 812 1507 1.77 483.35 3.45E+00 1.28E-02 11.1 9 0 295.39* 862 1477 1.21 590.42 2.95E+00 1.36E-02 10.1 10 0 338.56 1.25 676.60 2.63E+00 9.39E-03 11.8 596 1168 11 0 352.11* 1795 1155 1.18 703.66 2.54E+00 2.83E-02 4.9 12 511.16* 0 339 1140 2.20 1021.12 1.83E+00 5.34E-03 30.6 13 0 583.26* 840 724 1.45 1165.03 1.63E+00 1.32E-02 8.1 14 - 0 609.41* 1364 701 1.41 1217.23 1.57E+00 2.15E-02 1.62 1321.42 15 0 661.61 271 422 1.46E+00 4.27E-03 15.4 16 0 727.55* 410 1.51 1453.02 1.35E+00 3.48E-03 20.9 221 1.11E+00 8.04E-03 17: 0 911.49* 510 269 1.69 1820.12 8.6 18 0 969.68* 254 397 1.31 1936.25 1.06E+00 4.01E-03 18.4 256 1.77 2237.61 9.34E-01 4.73E-03 13.8 19 1120.69* 300 0 1.29 2472.48 8.59E-01 1.79E-03 29.7 20 0 1238.39* 113 236 0 1461.35* 136 2.00 2917.36 7.48E-01 2.43E-02 21 1539 3.6 1765.31* 2.03 3523.80 6.42E-01 3.55E-03 15.1 2.2 0 225 120

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type:

	7 I				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry	pCi/g Dry	%Error
K-40	1460.81	1539	10.67*	7.481E-01	1.532E+01	1.532E+01	7.17
CS-137	661.66	271	85.12*	1.463E+00	1.730E-01	1.734E-01	30.87
BI-214	609.31	1364	46.30	1.570E+00	1.491E+00	1.491E+00	10.53
	1120.29	300	15.10*	9.340E-01	1.691E+00	1.691E+00	27.62
	1764.49	225	15.80	6.424E-01	1.765E+00	1.765E+00	30.14
RA-226	186.21	437	3.28*	4.018E+00	2.633E+00	2.633E+00	35.74

L95403 302 of 332

,						
RA-228	93.35	383	3.50	2.875E+00	3.027E+00 3.064E+00	39.60
	969.11	254	16.60*	1.056E+00	1.154E+00 1.168E+00	36.83
TH-234	63.29		3.80*	8.696E-01	Line Not Found	
	92.60	383	5.41	2.875E+00	1.958E+00 1.958E+00	39.60
U-235	143.76		10.50*	4.209E+00	Line Not Found	and some state that state hade
	163.35		4.70	4.183E+00	Line Not Found	
	185.71	437	54.00	4.018E+00		35.74
	205.31		4.70	3.827E+00	Line Not Found	part and one one took box
Nuclide Ty	rpe: NATUR	AL				
					Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area		%Eff	pCi/g Dry pCi/g Dry	%Error
TL-208	583.17	840	30.25*	1.631E+00	1.353E+00 1.403E+00	16.20
BI-212	727.17	221	7.56*	1.348E+00	1.723E+00 1.786E+00	41.74
PB-212	238.63	2518	44.60*	3.477E+00	1.291E+00 1.339E+00	6.07
PB-214	295.21	862	19.20	2.950E+00	1.210E+00 1.210E+00	20.25
	351.92	1795	37.20*	2.541E+00	1.510E+00 1.510E+00	9.75
TH-232	911.21	510	27.70*	1.112E+00	1.316E+00 1.316E+00	17.20
		_				
Nuclide Ty	pe: natur	al				
					Uncorrected Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Dry pCi/g Dry	%Error
AC-228	835.50		1.75	1.198E+00	Line Not Found	times been been men taken bank
	911.07	510	27.70*	1.112E+00	1.316E+00 1.332E+00	17.20

Summary of Nuclide Activity Page: 2 Sample ID: 06L95403-20 Acquisition date: 21-MAR-2022 13:49:13

Total number of lines in spectrum 22
Number of unidentified lines 8

Number of lines tentatively identified by NID 14 63.64%

Nuclide Type :

Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 1.532E+01 1.532E+01 0.110E+01 7.17 CS-137 1.00 30.07Y 1.730E-01 1.734E-01 0.535E-01 30.87 BI-214 1600.00Y 1.00 1.691E+00 1.691E+00 0.467E+00 27.62 RA-226 1600.00Y 1.00 2.633E+00 2.633E+00 0.941E+00 35.74 RA-228 5.75Y 1.01 1.154E+00 1.168E+00 0.430E+00 36.83 TH-234 4.47E+09Y 1.00 1.958E+00 1.958E+00 0.775E+00 39.60 K U-235 7.04E+08Y 1.00 1.599E-01 1.599E-01 0.572E-01 35.74 K _____ _ _ _ _ _ _ _ _ _

Total Activity: 2.309E+01 2.311E+01

Nuclide Type : NATURAL

Uncorrected Decay Corr Decay Corr 2-Siqma Nuclide Hlife Decay pCi/q Dry pCi/g Dry 2-Sigma Error %Error Flags TL-208 1.91Y 1.04 1.353E+00 1.403E+00 0.227E+00 16.20 BI-212 1.91Y 1.04 1.723E+00 1.786E+00 0.746E+00 41.74 PB-212 1.91Y 1.04 1.291E+00 1.339E+00 0.081E+00 6.07 PB-214 1600.00Y 1.00 1.510E+00 1.510E+00 0.147E+00 9.75 TH-232 1.41E+10Y 1.00 1.316E+00 1.316E+00 0.226E+00 17.20 _____ ______

Total Activity: 7.193E+00 7.354E+00

Nuclide Type : natural

Decay Corr Uncorrected Decay Corr 2-Siqma Nuclide Hlife pCi/g Dry pCi/g Dry 2-Sigma Error %Error Flags Decay AC-228 1.332E+00 5.75Y 1.01 1.316E+00 0.229E+00 17.20

Total Activity: 1.316E+00 1.332E+00

Grand Total Activity: 3.160E+01 3.180E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page : Acquisition date : 21-MAR-2022 13:49:13

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
3	74.90 77.14 87.24	407 573	1332 1215	0.85	150.27 154.74	147	19	6.42E-03 9.04E-03	20.2	1.84E+00	
0 0 4	209.33 241.75	376 250 812	1309 1136 1507	1.19 0.79 1.77	174.90 418.63 483.35	415	7	5.93E-03 3.94E-03 1.28E-02	46.5	3.79E+00	
0 0 0	338.56 511.16 1238.39	596 339 113	1168 1140 236	1.25 2.20 1.29	676.60 1021.12	672 1012	11 21	9.39E-03 5.34E-03 1.79E-03	23.7 61.3	2.63E+00 1.83E+00	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 22 Number of unidentified lines 8 Number of lines tentatively identified by NID 14 63.64%

Nuclide Type :

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
K-40	1.28E+09Y	1.00	1.532E+01	1.532E+01	0.110E+01	7.17	
CS-137	30.07Y	1.00	1.730E-01	1.734E-01	0.535E-01	30.87	
BI-214	1600.00Y	1.00	1.530E+00	1.530E+00	0.143E+00	9.37	
RA-226	1600.00Y	1.00	2.633E+00	2.633E+00	0.941E+00	35.74	
RA-228	5.75Y	1.01	1.154E+00	1.168E+00	0.430E+00	36.83	
	Total Act	Lvity :	2.082E+01	2.083E+01			

Nuclide	Type	:	NATURAL
---------	------	---	---------

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error F	lags
TL-208	1.91Y	1.04	1.353E+00	1.403E+00	0.227E+00	16.20	_
BI-212	1.91Y	1.04	1.723E+00	1.786E+00	0.746E+00	41.74	
PB-212	1.91Y	1.04	1.291E+00	1.339E+00	0.081E+00	6.07	
PB-214	1600.00Y	1.00	1.430E+00	1.430E+00	0.126E+00	8.82	
TH-232	1.41E+10Y	1.00	1.316E+00	1.316E+00	0.226E+00	17.20	
	Total Acti	vitv :	7.114E+00	7.275E+00			

Total Activity : 7.114E+00

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/g Dry	pCi/g Dry	2-Sigma Error	%Error	Flags
AC-228	5.75Y	1.01	1.316E+00	1.332E+00	0.229E+00	17.20	
			private survey pulsers administration and street administration.				

Total Activity : 1.316E+00 1.332E+00

Grand Total Activity: 2.925E+01 2.944E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Dry)	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA
K-40 CS-137 TL-208 BI-212 PB-212 BI-214 PB-214 RA-226 AC-228 RA-228 TH-232	1.532E+01 1.734E-01 1.403E+00 1.786E+00 1.339E+00 1.530E+00 1.430E+00 2.633E+00 1.332E+00	1.098E+00 5.354E-02 2.272E-01 7.457E-01 8.121E-02 1.434E-01 1.261E-01 9.411E-01 2.292E-01 4.302E-01 2.264E-01	4.834E-01 6.114E-02 1.637E-01 7.206E-01 8.068E-02 3.973E-01 1.057E-01 1.004E+00 1.973E-01 4.328E-01 1.975E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	31.699 2.836 8.568 2.479 16.591 3.852 13.530 2.623 6.751 2.699 6.667
	n.316E+00 dentified Nuclide Key-Line Activity K.I	es	1.975E-01 MDA	MDA error	Act/MDA

	Non-Identified Nuclides									
Nuc	lide	Key-Line Activity K.L. (pCi/g Dry)Ided	Act error	MDA (pCi/g Dry)	MDA error	Act/MDA				
CO-	60	4.112E-02	3.663E-02	6.470E-02	0.000E+00	0.636				
LA-1	138	-8.255E-03	4.780E-02	7.869E-02	0.000E+00	-0.105				
PA-	234M	3.466E+00	3.837E+00	6.520E+00	0.000E+00	0.532				
TH-:	234	1.674E+00	2.469E+00	4.141E+00	0.000E+00	0.404				
U-2	35	4.466E-02	1.898E-01	3.063E-01	0.000E+00	0.146				
U-2	38	3.466E+00	3.837E+00	6.520E+00	0.000E+00	0.532				

```
A,06L95403-20
                    ,03/22/2022 07:26,02/13/2022 13:00,
                                                              5.360E+01,L95403-20 SS A
B,06L95403-20
                    , NORMK
                                            ,10/29/2021 09:14,06S50031621
C, K-40
                    1.532E+01,
                                  1.098E+00,
           , YĘS,
                                                 4.834E-01,,
                                                                 31.699
C, CS-137
                    1.734E-01,
           ,YES,
                                  5.354E-02,
                                                 6.114E-02,,
                                                                  2.836
C, TL-208
           , YES,
                    1.403E+00,
                                  2.272E-01,
                                                 1.637E-01,,
                                                                  8.568
           , YES,
C, BI-212
                    1.786E+00,
                                  7.457E-01,
                                                 7.206E-01,,
                                                                  2.479
C, PB-212
           , YES,
                    1.339E+00,
                                                                 16.591
                                  8.121E-02,
                                                 8.068E-02,,
                                                 3.973E-01,,
C,BI-214
           , YES,
                    1.530E+00,
                                  1.434E-01,
                                                                  3.852
C, PB-214
           , YES,
                    1.430E+00,
                                  1.261E-01,
                                                 1.057E-01,,
                                                                 13.530
           , YES,
C, RA-226
                    2.633E+00,
                                  9.411E-01,
                                                 1.004E+00,,
                                                                  2.623
C, AC-228
           , YES,
                    1.332E+00,
                                  2.292E-01,
                                                 1.973E-01,,
                                                                  6.751
C, RA-228
           , YES,
                    1.168E+00,
                                  4.302E-01,
                                                 4.328E-01,,
                                                                  2.699
           , YES,
C, TH-232
                    1.316E+00,
                                                 1.975E-01,,
                                  2.264E-01,
                                                                  6.667
C, CO-60
           ,NO,
                    4.112E-02,
                                  3.663E-02,
                                                 6.470E-02,,
                                                                  0.636
C, LA-138
           ,NO,
                   -8.255E-03,
                                  4.780E-02,
                                                 7.869E-02,,
                                                                 -0.105
C, PA-234M
           ,NO,
                    3.466E+00,
                                                 6.520E+00,,
                                  3.837E+00,
                                                                  0.532
C, TH-234
           ,NO,
                    1.674E+00,
                                  2.469E+00,
                                                 4.141E+00,,
                                                                  0.404
C, U-235
           ,NO,
                    4.466E-02,
                                  1.898E-01,
                                                 3.063E-01,,
                                                                  0.146
C, U-238
           ,NO,
                    3.466E+00,
                                  3.837E+00,
                                                 6.520E+00,,
                                                                  0.532
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 11-MAR-2022 12:49:49.47 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 11-MAR-2022 11:21:02.87

LIMS No., Customer Name, Client ID: WG38795-1 AN PSEG -SALEM/HC

Sample ID : 11WG38795-1

Smple Date: 7-MAR-2022 12:00:00.0

Sample Type : AN

Geometry : 1135L120319

Quantity : 2.48010E+00 Kg Wet

BKGFILE : 11BG030422MT

End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 01:28:33.85

MDA Multiple : 4.6600 Library Used: LIBD

Peak Evaluation - Identified and Unidentified

Pk It Area Bkqnd FWHM Channel %Eff Cts/Sec %Err Fit Energy

1 0 1461.17*

701

8 2.35 2920.16 4.47E-01 1.32E-01 4.0

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Energy Area %Abn %Eff pCi/Kg Wet pCi/Kg Wet %Error Nuclide 10.67* 4.474E-01 3.013E+03 3.013E+03 7.92 K - 401460.81 701

Flag: "*" = Keyline

Summary of Nuclide Activity Page: 2
Sample ID: 11WG38795-1 Acquisition date: 11-MAR-2022 11:21:02

Total number of lines in spectrum 1
Number of unidentified lines 0
Number of lines tentatively identified by NID 1 100.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/Kg Wet pCi/Kg Wet 2-Sigma Error %Error Flags

K-40 1.28E+09Y 1.00 3.013E+03 3.013E+03 0.239E+03 7.92

K-40 1.28E+09Y 1.00 3.013E+03 3.013E+03 0.239E+03 7.92

Total Activity: 3.013E+03 3.013E+03

Grand Total Activity: 3.013E+03 3.013E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 11WG38795-1

Acquisition date : 11-MAR-2022 11:21:02

None

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 1
Number of unidentified lines 0

Number of lines tentatively identified by NID 1 100.00%

Nuclide Type : natural

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/Kg Wet pCi/Kg Wet 2-Sigma Error Flags
K-40 1.28E+09Y 1.00 3.013E+03 3.013E+03 0.239E+03 7.92

3.013E+03

Total Activity: 3.013E+03

Grand Total Activity: 3.013E+03 3.013E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/Kg Wet)	Act error	MDA (pCi/Kg Wet)	MDA error	Act/MDA
K-40	3.013E+03	2.385E+02	9.648E+01	0.000E+00	31.230

---- Non-Identified Nuclides ----

NOII	-Identified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/Kg Wet)Ided	Act error	MDA (pCi/Kg Wet)	MDA error	Act/MDA
BE-7	-1.223E+00	4.457E+01	7.903E+01	0.000E+00	-0.015
NA-22	-5.402E-01	6.323E+00	1.124E+01	0.000E+00	-0.048
NA-24	-1.034E+02	3.900E+02	7.212E+02	0.000E+00	-0.143
CR-51	-1.599E+01	4.417E+01	7.304E+01	0.000E+00	-0.219
MN-54	-9.385E-01	5.571E+00	9.966E+00	0.000E+00	-0.094
CO-56	2.315E+00	6.231E+00	1.220E+01	0.000E+00	0.190
CO-57	3.046E+00	3.874E+00	7.027E+00	0.000E+00	0.433
CO-58	5.002E+00	5.717E+00	1.122E+01	0.000E+00	0.446
FE-59	3.696E+00	1.261E+01	2.320E+01	0.000E+00	0.159
CO-60	-1.905E+00	5.441E+00	9.398E+00	0.000E+00	-0.203
ZN-65	-1.521E+01	1.328E+01	2.066E+01	0.000E+00	-0.736
SE-75	-1.224E+00	6.845E+00	1.154E+01	0.000E+00	-0.106
· / -			•	L95403 310 of	332

			•	* · · · · · · · · · · · · · · · · · · ·	+ · · · · · · · · · · · · · · · · · · ·
Y-88	2.210E+00	4.273E+00	9.435E+00	0.000E+00	0.234
NB-94	-4.073E+00	5.725E+00	9.645E+00	0.000E+00	-0.422
NB-95	7.055E+00	5.152E+00	1.064E+01	0.000E+00	0.663
ZR-95	-8.294E+00	8.748E+00	1.358E+01	0.000E+00	-0.611
ZRNB-95	7.054E+00	5.152E+00	1.064E+01	0.000E+00	0.663
MO-99	8.811E+01	1.055E+02	2.024E+02	0.000E+00	0.435
RU-103	-2.934E+00	5.266E+00	8.904E+00	0.000E+00	-0.329
RU-106	-3.857E+00	4.636E+01	8.152E+01	0.000E+00	-0.047
AG-110m	-2.055E+00	5.100E+00	8.621E+00	0.000E+00	-0.238
SN-113	-3.922E+00	5.876E+00	9.991E+00	0.000E+00	-0.393
SB-124	-3.638E+00	4.849E+00	7.925E+00	0.000E+00	-0.459
SB-125	-1.749E+00	1.450E+01	2.560E+01	0.000E+00	-0.068
TE-129M	-3.901E+01	5.843E+01	9.829E+01	0.000E+00	-0.397
I-131	4.583E+00	7.012E+00	1.310E+01	0.000E+00	0.350
TE-132	8.088E+00	1.035E+01	1.852E+01	0.000E+00	0.437
BA-133	-9.175E+00	7.215E+00	1.178E+01	0.000E+00	-0.779
CS-134	2.368E+00	5.674E+00	1.088E+01	0.000E+00	0.218
CS-136	-2.543E+00	5.997E+00	1.053E+01	0.000E+00	-0.242
CS-137	4.715E+00	6.151E+00	1.154E+01	0.000E+00	0.409
CE-139	-1.216E+00	4.435E+00	7.569E+00	0.000E+00	-0.161
BA-140	3.626E+00	2.271E+01	4.081E+01	0.000E+00	0.089
BALA140	3.975E+00	6.451E+00	1.359E+01	0.000E+00	0.292
LA-140	3.975E+00	6.451E+00	1.359E+01	0.000E+00	0.292
CE-141	-9.139E-01	7.993E+00	1.386E+01	0.000E+00	-0.066
CE-144	-1.571E+01	3.135E+01	5.333E+01	0.000E+00	-0.295
EU-152	-1.006E+01	1.515E+01	2.591E+01	0.000E+00	-0.388
EU-154	-9.827E-01	8.353E+00	1.452E+01	0.000E+00	-0.068
RA-226	7.227E+00	1.145E+02	2.042E+02	0.000E+00	0.035
AC-228	1.504E+01	2.328E+01	4.541E+01	0.000E+00	0.331
TH-228	7.433E+00	9.813E+00	1.761E+01	0.000E+00	0.422
TH-232	1.502E+01	2.325E+01	4.535E+01	0.000E+00	0.331

Combined Activity-MDA Report (continued) Page: 2 Sample ID: 11WG38795-1 Acquisition date: 11-MAR-2022 11:21:02

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/Kg Wet)Ided	Act error	MDA (pCi/Kg Wet)	MDA error	Act/MDA
U-235	-1.460E+01	3.493E+01	5.963E+01	0.000E+00	-0.245
U-238	4.322E+02	6.508E+02	1.254E+03	0.000E+00	0.345
NP-239	-2.862E+01	4.828E+01	8.247E+01	0.000E+00	-0.347
AM-241	1.549E+00	1.158E+01	1.941E+01	0.000E+00	0.080

```
,03/11/2022 12:49,03/07/2022 12:00,
                                                                 2.480E+00, WG38795-1 AN P
A,11WG38795-1
                                             ,02/10/2022 09:58,1135L120319
B,11WG38795-1
                     , LIBD
                                    2.385E+02,
C, K-40
           , YES,
                    3.013E+03,
                                                   9.648E+01,,
                                                                   31.230
C, BE-7
           , NO
                    -1.223E+00,
                                    4.457E+01,
                                                   7.903E+01,,
                                                                   -0.015
C, NA-22
           , NO
                   -5.402E-01,
                                    6.323E+00,
                                                   1.124E+01,,
                                                                   -0.048
                                                   7.212E+02,,
                    -1.034E+02,
                                    3.900E+02,
                                                                   -0.143
C, NA-24
           , NO
           , NO
                                                   7.304E+01,,
                                                                   -0.219
C, CR-51
                    -1.599E+01,
                                    4.417E+01,
                                                                   -0.094
                    -9.385E-01,
                                    5.571E+00,
                                                   9.966E+00,,
C, MN-54
           , NO
C, CO-56
                    2.315E+00,
                                    6.231E+00,
                                                   1.220E+01,,
                                                                    0.190
           , NO
                                                   7.027E+00,,
                                                                    0.433
C, CO-57
           , NO
                     3.046E+00,
                                    3.874E+00,
           , NO
                    5.002E+00,
                                    5.717E+00,
                                                   1.122E+01,,
                                                                    0.446
C, CO-58
                     3.696E+00,
                                                   2.320E+01,,
                                                                    0.159
C, FE-59
                                    1.261E+01,
           , NO
C, CO-60
                                                   9.398E+00,,
                                                                   -0.203
           , NO
                    -1.905E+00,
                                    5.441E+00,
           , NO
                                    1.328E+01,
                                                   2.066E+01,,
                                                                   -0.736
C, ZN-65
                    -1.521E+01,
C, SE-75
                    -1.224E+00,
                                    6.845E+00,
                                                   1.154E+01,,
                                                                   -0.106
           , NO
C, Y-88
           , NO
                     2.210E+00,
                                    4.273E+00,
                                                   9.435E+00,,
                                                                    0.234
                    -4.073E+00,
                                    5.725E+00,
                                                   9.645E+00,,
                                                                   -0.422
C, NB-94
            , NO
                                                   1.064E+01,,
C, NB-95
            , NO
                     7.055E+00,
                                    5.152E+00,
                                                                    0.663
                                                                   -0.611
            , NO
                    -8.294E+00,
                                    8.748E+00,
                                                   1.358E+01,,
C, ZR-95
                                                   1.064E+01,,
C, ZRNB-95
                     7.054E+00,
                                    5.152E+00,
                                                                    0.663
           , NO
                                                                    0.435
            , NO
                     8.811E+01,
                                    1.055E+02,
                                                   2.024E+02,,
C, MO-99
                                    5.266E+00,
                                                   8.904E+00,,
                                                                   -0.329
C, RU-103
            , NO
                    -2.934E+00,
                                                   8.152E+01,,
                                                                   -0.047
C, RU-106
            , NO
                    -3.857E+00,
                                    4.636E+01,
C, AG-110m
           , NO
                    -2.055E+00,
                                    5.100E+00,
                                                   8.621E+00,,
                                                                   -0.238
            , NO
                                                                   -0.393
                    -3.922E+00,
                                                   9.991E+00,,
C, SN-113
                                    5.876E+00,
                    -3.638E+00,
                                                                   -0.459
                                    4.849E+00,
                                                   7.925E+00,,
C, SB-124
            , NO
            , NO
                                                                   -0.068
C, SB-125
                    -1.749E+00,
                                    1.450E+01,
                                                   2.560E+01,,
                                    5.843E+01,
                                                   9.829E+01,,
                                                                   -0.397
C, TE-129M , NO
                    -3.901E+01,
            , NO
C, I-131
                     4.583E+00,
                                    7.012E+00,
                                                   1.310E+01,,
                                                                    0.350
                                                   1.852E+01,,
                                                                    0.437
            , NO
                     8.088E+00,
                                    1.035E+01,
C, TE-132
                                                   1.178E+01,,
                    -9.175E+00,
                                    7.215E+00,
                                                                   -0.779
C, BA-133
            , NO
C, CS-134
            , NO
                     2.368E+00,
                                    5.674E+00,
                                                   1.088E+01,,
                                                                    0.218
                                                   1.053E+01,,
                                                                   -0.242
C, CS-136
            , NO
                    -2.543E+00,
                                    5.997E+00,
            , NO
                     4.715E+00,
                                    6.151E+00,
                                                   1.154E+01,,
                                                                    0.409
C, CS-137
                                                   7.569E+00,,
                                                                   -0.161
                    -1.216E+00,
                                    4.435E+00,
C, CE-139
            , NO
                                                   4.081E+01,,
                                                                    0.089
C, BA-140
            , NO
                     3.626E+00,
                                    2.271E+01,
                                                   1.359E+01,,
            , NO
                     3.975E+00,
                                    6.451E+00,
                                                                    0.292
C, BALA140
            , NO
C, LA-140
                     3.975E+00,
                                    6.451E+00,
                                                   1.359E+01,,
                                                                    0.292
C, CE-141
                                    7.993E+00,
                                                   1.386E+01,,
                                                                   -0.066
            , NO
                    -9.139E-01,
            , NO
                    -1.571E+01,
                                                   5.333E+01,,
                                    3.135E+01,
                                                                   -0.295
C, CE-144
            , NO
                                    1.515E+01,
                                                   2.591E+01,,
                                                                   -0.388
C, EU-152
                    -1.006E+01,
            , NO
                                                   1.452E+01,,
C, EU-154
                                    8.353E+00,
                                                                   -0.068
                    -9.827E-01,
C, RA-226
            , NO
                     7.227E+00,
                                    1.145E+02,
                                                   2.042E+02,,
                                                                     0.035
C, AC-228
                     1.504E+01,
                                    2.328E+01,
                                                   4.541E+01,,
                                                                     0.331
            , NO
                                    9.813E+00,
                                                   1.761E+01,,
                                                                     0.422
C, TH-228
            , NO
                     7.433E+00,
                                    2.325E+01,
                                                   4.535E+01,,
                                                                     0.331
C, TH-232
                     1.502E+01,
            , NO
C, U-235
            , NO
                    -1.460E+01,
                                    3.493E+01,
                                                   5.963E+01,,
                                                                    -0.245
C, U-238
            , NO
                     4.322E+02,
                                    6.508E+02,
                                                   1.254E+03,,
                                                                     0.345
                    -2.862E+01,
                                    4.828E+01,
                                                   8.247E+01,,
                                                                   -0.347
C, NP-239
            , NO
                                                   1.941E+01,,
                                    1.158E+01,
                                                                     0.080
C, AM-241
                     1.549E+00,
            , NO
```

Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 10-MAR-2022 13:48:57.49 TBE11 59-TN51806A HpGe ****** Aquisition Date/Time: 10-MAR-2022 12:48:40.89

LIMS No., Customer Name, Client ID: WG38781-1 VA DOMINION - MILLSTONE REMP

Sample ID : 11WG38781-1 Smple Date: 7-MAR-2022 08:55:00.0

Sample Type : VA Geometry : 1135L120319
Quantity : 1.37640E+03 g Wet BKGFILE : 11BG030422MT
Start Channel : 80 Energy Tol : 2.00000 Real Time : 0 01:00:01.96
End Channel : 4090 Pk Srch Sens: 9.00000 Live time : 0 01:00:00.00

MDA Multiple : 4.6600 Library Used: LIBD Peak Evaluation - Identified and Unidentified

Pk It Bkqnd FWHM Channel %Eff Cts/Sec %Err Fit Energy Area 80 102 477.53 1.70E+00 2.23E-02 28.5 239.51* 1.39 1.03E+00 1.07E-02 34.6 2 0.68 954.93 0 478.29 39 33 10 3 1461.36* 504 2.38 2920.52 4.47E-01 1.40E-01 4.6

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: activation

Uncorrected Decay Corr 2-Sigma Nuclide Energy Area &Abn %Eff pCi/g Wet pCi/g Wet %Error 2.047E-01 BE-7 477.59 39 10.42* 1.028E+00 1.964E-01 69.25

Nuclide Type: natural

	* *				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/g Wet	pCi/g Wet	%Error
K-40	1460.81	504	10.67*	4.473E-01	5.754E+00	5.754E+00	9.11
TH-228	238.63	80	44.60*	1.700E+00	5.779E-02	5.797E-02	57.05
	240.98	80	3.95	1.700E+00	6.525E-01	6.545E-01	57.05

Flaq: "*" = Keyline

Summary of Nuclide Activity Sample ID : 11WG38781-1

Page: : ::::2 Acquisition date : 10-MAR-2022 12:48:40

3

Total number of lines in spectrum

Number of unidentified lines Ω

Number of lines tentatively identified by NID 3 100.00%

Nuclide Type : activation

Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/g Wet pCi/g Wet 2-Sigma Error %Error Flags Nuclide Hlife

1.04 1.964E-01 2.047E-01 1.418E-01 BE-7 53.44D

> Total Activity: 1.964E-01 2.047E-01

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/g Wet pCi/g Wet 2-Sigma Error %Error Flags Nuclide Hlife

5.754E+00 0.524E+00 9.11 1.00 5.754E+00 K-40 1.28E+09Y 57.05 5.797E-02 3.307E-02 1.00 5.779E-02 TH-228 1.91Y

_____ ______ Total Activity : 5.812E+00 5.812E+00

6.017E+00 Grand Total Activity: 6.009E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 11WG38781-1

Page: 3 Acquisition date : 10-MAR-2022 12:48:40

None

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 3

Number of unidentified lines . 0 Number of lines tentatively identified by NID 3 100.00%

Nuclide Type : activation

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

Decay pCi/g Wet pCi/g Wet 2-Sigma Error %Error Flags 1.04 1.964E-01 2.047E-01 1.418E-01 69.25 Nuclide Hlife 1.04 1.964E-01 BE-7 53.44D

_____ Total Activity: 1.964E-01 2.047E-01

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/g Wet pCi/g Wet 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 5.754E+00 5.754E+00 0.524E+00 9.11 TH-228 1.91Y 1.00 5.779E-02 5.797E-02 3.307E-02 57.05

TH-228 1.91Y 1.00 5.779E-02 planty along close broad farmer broad faller broad farmer ______

5.812E+00 Total Activity: 5.812E+00

Grand Total Activity: 6.009E+00 6.017E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/g Wet)	Act error	MDA (pCi/g Wet)	MDA error	Act/MDA
BE-7	2.047E-01	1.418E-01	1.582E-01	0.000E+00	1.294
K-40	5.754E+00	5.240E-01	1.862E-01	0.000E+00	30.900
TH-228	5.797E-02	3.307E-02	3.095E-02	0.000E+00	1.873

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/g Wet)Ided	Act error	MĎA (pCi/g Wet)	MDA error Act	:/MDA
NA-22	-4.033E-03	1.475E-02	2.580E-02	0.000E+00	.156

L95403 316 of 332

	*				1 7 7 1
NA-24	9.854E-02	3.254E-01	6.877E-01	0.000E+00	0.143
CR-51	8.129E-03	1.013E-01	1.751E-01	0.000E+00	0,046
MN-54	-8.210E-03	1.290E-02	2.204E-02	0.000E+00	-0.372
CO-56	-2.661E-03	1.284E-02	2.468E-02	0.000E+00	-0.108
CO-57	-1.934E-03	8.011E-03	1.397E-02	0.000E+00	-0.138
CO-58	1.671E-04	1.125E-02	2.108E-02	0.000E+00	0.008
FE-59	-1.338E-02	2.655E-02	4.523E-02	0.000E+00	-0.296
CO-60	-4.402E-04	1.398E-02	2.551E-02	0.000E+00	-0.017
ZN-65	-2.706E-02	2.818E-02	4.458E-02	0.000E+00	-0,607
SE-75	1.072E-03	1.437E-02	2.498E-02	0.000E+00	0.043
Y-88	-1.622E-03	9.112E-03	1.803E-02	0.000E+00	-0,090
NB-94	-5.926E-03	1.161E-02	2.019E-02	0.000E+00	-0,293
NB-95	1.162E-03	1.100E-02	2.085E-02	0.000E+00	0.056
ZR-95	2.782E-02	2.115E-02	4.375E-02	0.000E+00	0.636
ZRNB - 95	1.162E-03	1.100E-02	2.085E-02	0.000E+00	0.056
MO-99	1.017E-01	1.998E-01	3.784E-01	0.000E+00	0.269
RU-103	1,023E-02	1,191E-02	2.315E-02	0.000E+00	0.442
RU-106	-2.488E-02	1.067E-01	1.863E-01	0.000E+00	-0,134
AG-110m	2.894E-03	1.162E-02	2.139E-02	0.000E+00	0.135
SN-113	-4.192E-03	1.364E-02	2.409E-02	0.000E+00	-0.174
SB-124	3.361E-03	1.123E-02	2.080E-02	0.000E+00	0,162
SB-125	1.549E-02	2.969E-02	5.664E-02	0.000E+00	0.274
TE-129M	-1.145E-01	1.369E-01	2.264E-01	0.000E+00	-0.506
I-131	2.224E-02	1.593E-02	3.151E-02	0.000E+00	0.706
TE-132	-7.551E-03	1.836E-02	3.083E-02	0.000E+00	-0.245
BA-133	-8.112E-03	1.518E-02	2.627E-02	0.000E+00	-0.309
CS-134	9.141E-03	1.336E-02	2.682E-02	0.000E+00	0.341
CS-136	-1.734E-03	1.217E-02	2.248E-02	0.000E+00	-0.077
CS-137	-9.355E-03	1.345E-02	2.197E-02	0.000E+00	-0.426
CE-139	2.000E-03	9.336E-03	1.658E-02	0.000E+00	0.121
BA-140	2.215E-02	4.280E-02	8.232E-02	0.000E+00	0.269
BALA140	-3.950E-04	1.094E-02	2.228E-02	0.000E+00	-0.018
LA-140	-3.950E-04	1.094E-02	2.228E-02	0.000E+00	-0.018
CE-141	-2.846E-04	1.632E-02	2.884E-02	0.000E+00	-0.010
CE-144	-3.393E-02	6.718E-02	1.147E-01	0.000E+00	-0.296
EU-152	1.714E-02	3.575E-02	6.674E-02	0.000E+00	0.257
EU-154	-9.943E-03	1.726E-02	2.944E-02	0.000E+00	-0.338
RA-226	2.668E-01	2.668E-01	5.032E-01	0.000E+00	0.530
AC-228	5.458E-02	5.441E-02	1.110E-01	0.000E+00	0.492
TH-232	5.452E-02	5.435E-02	1.109E-01	0.000E+00	0.492

Combined Activity-MDA Report (continued) Page: 2 Sample ID: 11WG38781-1 Acquisition date: 10-MAR-2022 12:48:40

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/g Wet)Ided	Act error	MDA (pCi/g Wet)	MDA error	Act/MDA
U-235	-3.331E-02	7.320E-02	1.258E-01	0.000E+00	-0.265
U-238	3.423E-01	1.535E+00	2.873E+00	0.000E+00	0.119
NP-239	-9.673E-03	7.295E-02	1.289E-01	0.000E+00	-0.075
AM-241	1.040E-02	2.512E-02	4.325E-02	0.000E+00	0.240

```
,03/10/2022 13:48,03/07/2022 08:55,
                                                                1.376E+03, WG38781-1 VA D
A, 11WG38781-1
                                             ,02/10/2022 09:58,1135L120319
B,11WG38781-1
                     ,LIBD
                                   1.418E-01,
                                                  1.582E-01,,
                     2.047E-01,
                                                                    1.294
C, BE-7
           , YES,
           , YES,
                                                                   30.900
C, K-40
                     5.754E+00,
                                    5.240E-01,
                                                  1.862E-01,,
                                                  3.095E-02,,
           , YES,
                     5.797E-02,
                                   3.307E-02,
                                                                    1.873
C, TH-228
                    -4.033E-03,
                                   1,475E-02,
                                                  2.580E-02,,
                                                                   -0.156
C, NA-22
           , NO
                                                   6.877E-01,,
                                                                    0.143
                     9.854E-02,
                                   3.254E-01,
C, NA-24
           , NO
           , NO
                                                  1.751E-01,,
                     8.129E-03,
                                   1.013E-01,
                                                                    0.046
C, CR-51
                                    1.290E-02,
                                                   2.204E-02,,
                                                                   -0.372
C, MN-54
           , NO
                    -8.210E-03,
                                                   2.468E-02,,
C, CO-56
                    -2.661E-03,
                                    1.284E-02,
                                                                   -0.108
           , NO
                                                                   -0.138
C, CO-57
            , NO
                    -1.934E-03,
                                    8.011E-03,
                                                   1.397E-02,,
                                                   2.108E-02,,
                     1.671E-04,
                                   1.125E-02,
                                                                    0.008
C, CO-58
           , NO
           ,NO
                                    2.655E-02,
                                                   4.523E-02,,
                                                                   -0.296
C, FE-59
                    -1.338E-02,
                                    1.398E-02,
                                                   2.551E-02,,
                                                                   -0.017
C, CO-60
            , NO
                    -4.402E-04,
            , NO
                    -2.706E-02,
                                    2.818E-02,
                                                   4.458E-02,,
                                                                   -0.607
C, ZN-65
                                                   2.498E-02,,
                                                                    0.043
C, SE-75
                     1.072E-03,
                                    1.437E-02,
            , NO
                                    9.112E-03,
                                                   1.803E-02,,
                                                                   -0.090
C, Y-88
            , NO
                    -1.622E-03,
                                                                   -0.293
                                    1.161E-02,
                                                   2.019E-02,,
                    -5.926E-03,
C, NB-94
            , NO
                                                   2.085E-02,,
                                    1.100E-02,
                                                                    0.056
C, NB-95
            , NO
                     1.162E-03,
            , NO
                                                                    0.636
                                    2.115E-02,
                                                   4.375E-02,,
C, ZR-95
                     2.782E-02,
            , NO
                                                   2.085E-02,,
                                                                    0.056
                     1.162E-03,
                                    1.100E-02,
C, ZRNB-95
            , NO
                                                   3.784E-01,,
                                                                    0.269
C, MO-99
                     1.017E-01,
                                    1.998E-01,
            , NO
                     1.023E-02,
                                    1.191E-02,
                                                   2.315E-02,,
                                                                    0.442
C, RU-103
            , NO
                                                   1.863E-01,,
                                                                   -0.134
C, RU-106
                    -2.488E-02,
                                    1.067E-01,
                                    1.162E-02,
                                                   2.139E-02,,
                                                                    0.135
C, AG-110m
           , NO
                     2.894E-03,
            , NO
                                                                   -0.174
                    -4.192E-03,
                                    1.364E-02,
                                                   2.409E-02,
C, SN-113
            , NO
                                                   2.080E-02,,
                                                                    0.162
                     3.361E-03,
                                    1.123E-02,
C, SB-124
                                                   5.664E-02,,
                                                                    0.274
C, SB-125
            , NO
                     1.549E-02,
                                    2.969E-02,
                                                                   -0.506
                                                   2.264E-01,,
C, TE-129M
            , NO
                    -1.145E-01,
                                    1.369E-01,
                                                                    0.706
            , NO
                     2.224E-02,
                                    1.593E-02,
                                                   3.151E-02,,
C, I-131
            , NO
                                                   3.083E-02,,
                                                                   -0.245
                                    1.836E-02,
C, TE-132
                    -7.551E-03,
                                                   2.627E-02,,
                                                                   -0.309
                    -8.112E-03,
                                    1.518E-02,
C, BA-133
            , NO
            , NO
C, CS-134
                     9.141E-03,
                                    1.336E-02,
                                                   2.682E-02,,
                                                                    0.341
                                                   2.248E-02,,
                                                                   -0.077
C, CS-136
            , NO
                    -1.734E-03,
                                    1.217E-02,
                    -9.355E-03,
            , NO
                                    1.345E-02,
                                                   2.197E-02,,
                                                                   -0.426
C, CS-137
                                                   1.658E-02,,
                                                                    0.121
                                    9.336E-03,
                     2.000E-03,
C, CE-139
            , NO
                                    4.280E-02,
                                                   8.232E-02,,
                                                                    0.269
C, BA-140
            , NO
                     2.215E-02,
                                                   2.228E-02,,
                                                                   -0.018
C, BALA140
            , NO
                    -3.950E-04,
                                    1.094E-02,
                                                   2.228E-02,,
                                                                   -0.018
C, LA-140
            , NO
                    -3.950E-04,
                                    1.094E-02,
C, CE-141
            , NO
                                    1.632E-02,
                                                   2.884E-02,,
                                                                   -0.010
                    -2.846E-04,
                                                   1.147E-01,,
                                                                   -0.296
            , NO
                    -3.393E-02,
                                    6.718E-02,
C, CE-144
                                                   6.674E-02,,
                                                                    0.257
            , NO
                     1.714E-02,
                                    3.575E-02,
C, EU-152
                                                                   -0.338
                                    1.726E-02,
                                                   2.944E-02,,
C, EU-154
            , NO
                    -9.943E-03,
            , NO
C, RA-226
                     2.668E-01,
                                    2.668E-01,
                                                   5.032E-01,
                                                                    0.530
                                    5.441E-02,
                                                   1.110E-01,,
                                                                    0.492
            , NO
                     5.458E-02,
C, AC-228
                                                                    0.492
                                    5.435E-02,
                                                   1.109E-01,,
C, TH-232
            , NO
                     5.452E-02,
                                                                   -0.265
C, U-235
            , NO
                                                   1.258E-01,,
                                    7.320E-02,
                    -3.331E-02,
                                                   2.873E+00,,
                                                                    0.119
C, U-238
            , NO
                     3.423E-01,
                                    1.535E+00,
                                                   1.289E-01,,
C, NP-239
            , NO
                    -9.673E-03,
                                    7.295E-02,
                                                                   -0.075
                                    2.512E-02,
                                                   4.325E-02,,
                                                                    0.240
            , NO
                     1.040E-02,
C, AM-241
```

GAMMA SPECTROSCOPY

Prep and Run Logs

L95403

GELI

Sample#	Matrix QC	Analysis	Aliquot Volume / Units	Aliquot Date	Analy	Aliquot st Instrument	Tare Weight	Tare Balance	Final Weight	Final Balance	Mount Weight	Mount t Date	Workgroup
WG38781-1	VA DUP		1376.4 g wet		DH	BALANCE 15							WG38781
WG38795-1	AN DUP	GELI	2480.1 g wet	03/10/22	DH	BALANCE 15							WG38795
L95403-1	SS (GELI	21.4 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-2	SS (GELI	32.3 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-3	SS (GELI	35.7 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-4	SS (GELI	26.7 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-5	SS (GELI	30.4 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-6	SS (GELI	24.6 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-7	SS (GELI	27.4 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-8	SS (GELI	45.9 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-9	SS (GELI	31.1 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-10	SS (GELI	24.8 g dry	03/16/22	DH	BALANCE 15							WG38781
L95403-11	SS (GELI	25.5 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-12	SS (GELI	26.9 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-13	SS (GELI	21.4 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-14	SS (GELI	41.7 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-15	SS (GELI		03/16/22	DH	BALANCE 15							WG38795
L95403-16	SS (GELI	30 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-17	SS (GELI		03/16/22	DH	BALANCE 15							WG38795
L95403-18	SS (GELI	23.6 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-19	SS (GELI	49.1 g dry	03/16/22	DH	BALANCE 15							WG38795
L95403-20	SS (GELI	53.6 g dry	03/16/22	DH	BALANCE 15							WG38795

Teledyne Analytical Laboratory 2508 Quality Lane Knoxville, Tennessee 37931

TELEDYNE BROWN ENGINEERING Gamma Worksheet/Run log (gammaws_L)

Mar 23 2022, 02:04 pm

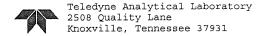
L95403 - Origin: E Due Date: 03/21/22

GELI

Det. ID/Date Sample ID Client ID Reporting Reference Nuclide MDC Mat Product ID Verification Units Date/Time

Technical Notes/Instructions Anchor QEA, LLC

AN003-3EREGBTESKE-22 ANCHOR QEA Report Format: Level 4 - Full 3Sigma MS/MSD recovery 70 - 130, RPD < 30%


Uncertainty Less than 30%. LLD Formula None

Countroom Library: NORMK

Project Manager: K.ARTERBURN						
Det. CountDate Verify						
()\ ()3 722 \ \text{\$\text{\$Z}\$ \ \text{\$\text{\$L95403-1} \ \text{\$\text{\$\text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$\text{\$}}\$}\ \text{\$\text{\$\text{\$\text{\$}}\$}\ \$\text{	02/13/2022 13:37 (P/M) SS	GELI	2.1400E+01 Dry	pCi/g Dry ss	CS-137	1.000E-01
03 031922 w L95403-2535 8; 5.21	02/13/2022 13:37 (P/M) SS	GELI	3.2300E+01 Dry	pCi/g Dry		
A L95403-3 S35 15; 5.21	02/13/2022 13:37 (P/M) SS	GELI	3.5700E+01 Dry	pCi/g Dry		
11 031722 1 L95403-4 SAS 22; 5.21	02/13/2022 13:37 (P/M) SS	GELI	2.6700E+01 Dry	pCi/g Dry		
13 03/822 W L95403-5 S&S 29; 5.21	02/13/2022 13:37 (P/M) SS	GELI	3.0400E+01 Dry	pCi/g Dry		
02 031722 d L95403-6 SA5 36; 5.21	02/13/2022 13:37 (P/M) SS	GELI	2.4600E+01 Dry	pCi/g Dry		
23 031822 U L95403-7 SAS 43; 5.21	02/13/2022 13:37 (P/M) SS	GELI	2.7400E+01 Dry	pCi/g Dry		
OV □ L95403-8 \$50 50; 5.21	02/13/2022 13:37 (P/M) SS	GELI	4.5900E+01 Dry	pCi/g Dry		
07 V D L95403-9 505 57; 5.21	02/13/2022 13:37 (P/M) SS	GELI	3.1100E+01 Dry	pCi/g Dry		
07 031722 # L95403-10 SAS 63; 5.21	02/13/2022 13:37 (P/M) SS	GELI	2.4800E+01 Dry	pCi/g Dry		
14 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	02/13/2022 12:56 (P/M) SS	GELI	2.5500E+01 Dry	pCi/g Dry		
08 0 L95403-12 S&5 72; 5.11	02/13/2022 12:56 (P/M) SS	GELI	2.6900E+01 Dry	pCi/g Dry		
23 V L95403-13 535 80; 5.11	02/13/2022 12:56 (P/M) SS	GELI	2.1400E+01 Dry	pCi/g Dry		
\\ \03\822 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	02/13/2022 12:56 (P/M) SS	GELI	4.1700E+01 Dry	pCi/g Dry		
OV 03/723 D L95403-15525 96; 5.11	02/13/2022 12:56 (P/M) SS	GELI	2.7300E+01 Dry	pCi/g Dry		
0) By 22 195403-16 535 104; 5.11	02/13/2022 12:56 (P/M) SS	GELI	3.0000E+01 Dry	pCi/g Dry		
Ø L95403-17\$50 112; 5.11	02/13/2022 12:56 (P/M) SS	GELI	4.4100E+01 Dry	pCi/g Dry		
13 031722 d L95403-18525 120; 5.11	02/13/2022 12:56 (P/M) SS	GELI	2.3600E+01 Dry	pCi/g Dry		
00 032/22 & L95403-19550 128; 5.11	02/13/2022 12:56 (P/M) SS	GELI	4.9100E+01 Dry	pCi/g Dry		
OV	02/13/2022 13:00 (P/M) SS	GELI	5.3600E+01 Dry	pCi/g Dry		

03/21/22

Due Date:

TELEDYNE BROWN ENGINEERING Gamma Worksheet/Run log (gammaws_wg)

Mar 23 2022, 02:05 pm

WG38781 - Origin: E

GELI

Due Date: 03/21/22

ID Verification Client ID Det. ID/Date Sample ID

Reference Date/Time

Mat Product

Technical Notes/Instructions

Reporting Units

Due Date:

Nuclide

MDC

04/04/22

Teledyne Brown Engineering

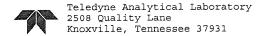
TE511-LABQC Internal Lab QC (Bla Report Format: Level 1 - Full 3Sigma

LLD Formula None

Countroom Library: LIBD

Project Manager: S.NORTHCUTT

Det. CountDate Verify


1031122 MWG38781-1 (L95387-1)

JORDAN COVE W

03/07/2022 08:55 (F/M) VA

GELI

1.3764E+03 Wet pCi/g Wet

TELEDYNE BROWN ENGINEERING Gamma Worksheet/Run log (gammaws_wg)

Mar 23 2022, 02:04 pm

WG38795 - Origin: E Due Date: 03/21/22

GELI

ID Verification

Client ID

Reference Date/Time

Product Mat

Reporting Units

Nuclide

MDC

Teledyne Brown Engineering

Technical Notes/Instructions

Due Date:

04/04/22

TE511-LABQC Internal Lab QC (Bla Report Format: Level 1 - Full 3Sigma

LLD Formula None

Det. ID/Date Sample ID

Countroom Library: LIBD

Project Manager: S.NORTHCUTT

(L95392-1)

Det. CountDate Verify

031022 WG38795-1

SAGAM13E3

03/07/2022 12:00 (F/E) AN

GELI

2.4801E+00 Wet pCi/Kg Wet

GAMMA SPECTROSCOPY

Balance and Pipette Check

Daily Balance Tolerance Check Reports

for: L95403

Instrument: BALANCE 15

Model: A&D GX-6001A

Serial Number: T2008157

Description: A&D 6100 g capacity top

loading balance.

Known Weight Initial calibration by PCS

06/17/21

Result Weight

1.0000
100.0000
1000.0000
_

Prod

NONE BALANCE 15 10-MAR-22

Check Date: 10-MAR-22

Analyst: DH

WTSET 3

1%

Weight Set Used:

Tolerance:

Out of Range:

Daily Balance Tolerance Check Reports

for: L95403

Instrument: BALANCE 15

Model: A&D GX-6001A

Serial Number: T2008157

Description: A&D 6100 g capacity top

loading balance.

Known Weight Initial calibration by PCS

06/17/21

Result Weight

1.0000	1.0000
100.0000	100.0000
1000.0000	1000.0000

Prod

BALANCE 15 16-MAR-22 GELI BALANCE 15 16-MAR-22 NONE

Check Date: 16-MAR-22

Analyst: DH

WTSET 3

1%

Weight Set Used:

Tolerance:

Out of Range:

Gamma Standard

24937 Avenue Tibbitts Valencia, California 91355

Tel 661·309·1010

Fax 661.257.8303

CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOLUTION

Customer:

TELEDYNE BROWN ENGINEERING, INC.

Source No.:

2088-10-1

P.O. No.:

PO00149995

Reference Date:

1-Jun-19

12:00 PST

Catalog No.:

7602

Contained Radioactivity:

1.026

μCi 37.96 kBq

Physical Description:

A. Mass of solution:

5.16168 grams in 5 mL flame-sealed ampoule

B. Chemical form:

Multinuclide in 2M HCI

C. Carrier content: D. Density:

See attached sheet 1.033 g/mL @ 20°C

Gamma-Ray	
Energy (keV)	

					7.5	11899
Gamma-Ray	Nuclide	Half-life	Branching	Conc.	Gammas per	Total
Energy (keV)			Ratio (%)	(nCi/g)	second per gram	Uncert.
47	Pb-210	22.3 ± 0.2 years	4.18	46.62	72.10	4.1 %
88	Cd-109	462.6 ± 0.7 days	3.63	63.10	84.75	3.0 %
122	Co-57	271.79 ± 0.09 days '	85.6	2.439	77.25	3.1 %
166	Ce-139	137.640 ± 0.023 days	79.9	3.135	92.68	3.1 %
279	Hg-203	46.595 ± 0.013 days	81.5	9.054	273.0	3.1 %
392	Sn-113	115.09 ± 0.04 days	64.9	11.66	280.0	3.0 %
514	Sr-85	64.849 ± 0.004 days	98.4	15.05	547.9	3.0 %
662	Cs-137	30.17 ± 0.16 years	85.1	. 10.50	330.6	3.0 %
898	Y-88	106.630 ± 0.025 days	94.0	24.69	858.7	3.0 %
1173	Co-60	5.272 ± 0.001 years	99.86	12.46	460.4	3.0 %

Method of Calibration:

This source was prepared from weighed, aliquots of solutions whose concentrations in µCi/g were determined Undiluza 571 Wilwhed STD

99.98

99.4

by gamma spectrometry.

Co-60

Y-88

0.7245 q in Filter Petri Dish

 5.272 ± 0.001 years

106.630 ± 0.025 days

460.9

908.0

3.0 %

3.0 %

Notes:

1333

1836

- See reverse side for leak test(s) performed on this source.

- EZIP participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).

- Nuclear data was taken from IAEA-TECDOC-619, 1991.

- Overall uncertainty is calculated at the 99% confidence level.

- This source has a recommended working life of 1 year.

12.46

24.69

EZIP Ref. No.: 2088-10

ISO 9001 CERTIFIED -

E & Z 2088-10-1 Mixed Gamma 6/1/19 12:00 PM

FULL 20 ML LSC VIAL

		Orig. Wt	5.1617	Volume	50					
•		Wt Used	4.4184	Aliquot	2.0000	Certificate	Aliquoted	Actual	Percent	
Nuclide	Half-Life	Energy(KeV)	.ate G/s/	%err	%abn	Bq/Tot	G/S	Bq/Tot	Diff	_
Cd-109	462.9d	88.0	84.75		3.72%	402.64	14.98			
Co-57	271.8d	122.1	77.25		85.51%	15.97	13.65			
Ce-139	137.64d	165.9	92.68	•	80.35%	20.39	16.38			
Hg-203	46.6d	279.2	273		77.30%	62.42	48.25			
Sn-113	115.09d	391.7	280		64.90%	76.25	49.49			
Sr-85	64.849	514.0	547.9		98.40%	98.41	96.83			
Cs-137	30.17y	661.6	330.6		85.12%	68.64	58.43			
Y-88	106.65d	898.0	858.7		93.40%	162.49	151.76			
Co-60	5.27y	1173.2	460.4		100.00%	81.37	81.37			
Co-60	5.27y	1332.5	460.9		100.00%	81.46	81.46			
Y-88	106.65d	1836.0	908		99.38%	161,48	160.48			

Eff. Name:

Analyst: KOJ

PERCENT MOISTURE

Percent Moisture Report

Run Date: 03/23/2022

<u> L95403</u>

Sample#	Client ID	Tare Wt	Wet Wt	Dry Wt	Tare Balance/Date	Dry Balance/Date A	Analyst % Moist
L95403-1	1; 5.2-1	124.5	159.4	147	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 35.53
L95403-2	8; 5.2-1	124.6	211.5	182.4	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 33.49
L95403-3	15; 5.2-1	124.5	200.2	173.1	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 35.8
L95403-4	22; 5.2-1	124.2	175.8	156.8	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 36.82
L95403-5	29; 5.2-1	124.2	176	160.1	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 30.69
L95403-6	36; 5.2-1	123.8	173.3	152.9	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 41.21
L95403-7	43; 5.2-1	123.8	181.1	158.1	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 40.14
L95403-8	50; 5.2-1	123.8	196.6	171.8	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 34.07
L95403-9	57; 5.2-1	123.3	177.1	162.2	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 27.7
L95403-10	63; 5.2-1	123.3	166.9	151.7	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 34.86
L95403-11	64; 5.1-1	123.3	166.2	150.7	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 36.13
L95403-12	72; 5.1-1	124	175.1	154.2	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 40.9
L95403-13	80; 5.1-1	123.7	156.6	146.8	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 29.79
L95403-14	88; 5.1-1	124.1	192.3	168	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 35.63
L95403-15	96; 5.1-1	123.4	169.3	152.9	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 35.73
L95403-16	104; 5.1-1	123.7	180.4	161.3	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 33.69
L95403-17	112; 5.1-1	123.8	194.7	170.5	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 34.13
L95403-18	120; 5.1-1	123	162.4	148.9	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 34.26
L95403-19	128; 5.1-1	124.2	199.5	175.6	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 31.74
L95403-20	137; 5.1-1	123	208.2	179.9	BALANCE 15 03/10/22	BALANCE 15 03/16/22	DH 33.22

Appendix IV Field Notes

ANCHOR Sedin	nent Core	Collection L	og	Page 1 of 24
Job: Grand Lake Vibracore		Station ID:	08.1-1	rage 1 01 24
Job No: 212451-01.01	_	Attempt No.	1	_
Field Staff: RC, TK, BT	_		/10/2022	_
Contractor: N/A	_	Logged By:	ВТ	_
Vertical Datum: NAVD88	_	Horizontal Datum:	OK State Plane N	- -
Field Collection Coordinates:		1	0045750 (
Lat/Northing: 619980 ft	-	Long/Easting:	2915758 ft	_
A. Water Depth	B. Water Leve	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 23 ft	Time:	14:09	723.5 ft	_
DTM Lead Line:	Height:	743.5 ft		
			Recovery Measurements (prio	r to cuts)
Core Collection Recovery Details:			†	
Core Accepted: Yes				
Core Tube Length: 16 ft				
Drive Penetration: 9.5-10 ft		_	+	
Headspace Measurement: 3 in		-		
Recovery Measurement: 93 in			7	
Recovery Percentage: 82%)	- ₌		
Total Length of Core To Process: 93 in (7.7		- Bue		
Transport of the first terms of	<i>-</i> ,	- e F		
Drive Notes:		Core Tube Length		
Soft sediment				
Con Seament		 မိ		
]	
			* • • • • • • • • • • • • • • • • • • •	
Core Field Observations and Descriptio	n:	Sediment type, moisture,	color, minor modifier, MAJOR modifier, o	ther constituents,
			xic layer, debris, plant matter, shells, bio	ta
Gray w/ brownish streaks, silt-clay, firmer in	deeper part of	core		
Notes:				
Took grain size sample from top & bottom	I ft of core			

ANCHOR OEA Sedi	ment Core	Collection	LO	og .	Page 2 of 24
Job: Grand Lake Vibracore		Station ID:		08.1-2	_
Job No: 212451-01.01	<u></u>	Attempt No.		2	_
Field Staff: RC, TK, BT		Date:	2/	10/2022	_
Contractor: N/A		Logged By:		ВТ	_
Vertical Datum: NAVD88		Horizontal Datur	n:	OK State Plane N	_
Field Collection Coordinates:					
Lat/Northing: 619980 ft		Long/Easting:		2915758 ft	_
A. Water Depth	B. Water Lev	el Measurements		C. Mudline Elevation	
DTM Depth Sounder: 23 ft	Time:	14:30		723.5 ft	<u></u>
DTM Lead Line:	Height:	743.5 ft			
				Recovery Measurements (prio	r to cuts)
Core Collection Recovery Details:				† <u> </u>	
Core Accepted: Yes					
Core Tube Length: 11 ft		_			
Drive Penetration: 144 in		<u> </u>		†	
Headspace Measurement: 3 in		<u> </u>			
Recovery Measurement: 129 in		<u> </u>			
Recovery Percentage: 90)%	_	돪	1 1 1 1	
Total Length of Core To Process: 129 in		_	Core Tube Length		
Duive Notes			npe		
Drive Notes:			 		
Soft sediment; drive to refusal at ~12 ft			[흥]		
				• -	
Core Field Observations and Descript	ion:	Sediment type, moisti	ure, co	olor, minor modifier, MAJOR modifier, c	other constituents,
		odor, sheen, layering,	, anoxi	ic layer, debris, plant matter, shells, bio	
Gray w/ brownish streaks, silt-clay, firmer	in deeper part of	core; no visible lay	ering		
Notes:					
	4.6 . 6 .				
Took grain size sample from top & botton	1 1 tt of core				

V ANCHOR Sec	liment Core	e Collection L	og	Days 2 of 24
Job: Grand Lake Vibracore		Station ID:	01.1-1	Page 3 of 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			/11/2022	_
Contractor: N/A		Logged By:	BT	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	<u>-</u> _
Field Collection Coordinates: Lat/Northing: 669690 ft		Long/Easting:	2905562 ft	
	D. Watan La	vel Measurements		_
A. Water Depth			C. Mudline Elevation	
DTM Depth Sounder: 18 ft	Time:	13:30	726.3 ft	_
DTM Lead Line:	Height:	744.3 ft	Recovery Measurements (pric	or to cuts)
	-		, teeers, measurement (p.1.5	. 15 54.15,
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 16 ft		_		
Drive Penetration: 4.5 ft		_	†	
Headspace Measurement: 2 in			_ '	
Recovery Measurement: 48 in		_		
, ü	39%	_ fg		
Total Length of Core To Process: 48 in		Core Tube Length		
		eq		
Drive Notes:				
Drove to refusal		jö		
			-	
			+ LN	
Core Field Observations and Descrip	otion:	Sediment type, moisture,	color, minor modifier, MAJOR modifier, o	other constituents,
		odor, sheen, layering, ano	oxic layer, debris, plant matter, shells, bio	ta
No visible layers, grayish clay througho	ut core			
Firmer material at bottom of core tube				
Notes:				
Grain size samples @ 1 ft intervals				

V ANCHOR Sec	liment Core	Collection L	_og	Page 4 of 24
Job: Grand Lake Vibracore		Station ID:	01.1-2	Page 4 of 24
Job No: 212451-01.01		Attempt No.	2	_
Field Staff: RC, TK, BT		Date:	2/11/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
Field Collection Coordinates: Lat/Northing: 669690 ft		Long/Easting:	2905562 ft	
	_			_
A. Water Depth		el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 18 ft	Time:	13:45	726.3 ft	_
DTM Lead Line:	Height:	744.3 ft	Recovery Measurements (prio	or to cute)
	•		recovery ineasurements (pric	i to cuts)
Core Collection Recovery Details:			† <u> </u>	
Core Accepted: Yes				
Core Tube Length: 8 ft		_		
Drive Penetration: 6 ft		_	†]	
Headspace Measurement: 3in		<u> </u>	_ '	
Recovery Measurement: 5 ft 3	n = 63 in	_	\neg \mid \mid \mid \mid	
Recovery Percentage:	66%	_ =	되는	
Total Length of Core To Process: 63 in		_ {	[
			Core Tube Length	
Drive Notes:		F		
Drive went to refusal			e	
			3	
			_	
			.	
Core Field Observations and Descrip	otion:		e, color, minor modifier, MAJOR modifier, c noxic layer, debris, plant matter, shells, bic	
No visible layers, grayish clay throughout	ıt core	ouor, erroom, rayering, ar	none layer, accine, plant matter, eneme, see	
Firmer near bottom, no significant differ		onvice		
Firmer near bottom, no significant differ	ence in texture offic	erwise		
Notes				
INCHAS:				
Notes:				
Grain size samples @ 1 ft intervals				

ANCHOR Se	diment Core	Collection Lo	og	Page 5 of 24
Job: Grand Lake Vibracore		Station ID:	02.1-1	Page 5 of 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			11/2022	_
Contractor: N/A		Logged By:	BT	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
Field Collection Coordinates: Lat/Northing: 669340 ft		Long/Easting:	2911790 ft	
Laurioriting. 009040 it		Long/Lasting.	231173010	=
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 14 ft	Time:	14:30	730.0 ft	_
DTM Lead Line:	Height:	744.0 ft	5	
			Recovery Measurements (prior	r to cuts)
Core Collection Recovery Details:			† []	
Core Accepted: Yes				
Core Tube Length: 16 ft				
Drive Penetration: 6 ft		_		
Headspace Measurement: 1 in		_		
Recovery Measurement: 5' 3"	= 63 in			
Recovery Percentage:	88%	gth		
Total Length of Core To Process: 63 in	1	- eu		
		Core Tube Length		
Drive Notes:		n		
Drove to refusal				
			'	
			 	
Core Field Observations and Desc	ription:		olor, minor modifier, MAJOR modifier, o	
N	0	odor, sheen, layering, anox	cic layer, debris, plant matter, shells, bio	ta
No visible layers in core, grayish clay	tnrougnout			
Softer near surface				
Notes:				
Grain size samples @ 1 ft intervals				
Stant Size Samples & Transcivais				

V ANCHOR OEA SE	diment Core	Collection Lo	o g	Page 6 of 24
Job: Grand Lake Vibracore		Station ID:	02.1-2	Ū
Job No: 212451-01.01		Attempt No.	2	
Field Staff: RC, TK, BT			11/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	-
Field Cellection Coordinates				
Field Collection Coordinates: Lat/Northing: 669340 ft		Long/Easting:	2911790 ft	_
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 14 ft	Time:	14:45	730.0 ft	
DTM Lead Line:	Height:	744.0 ft		_
			Recovery Measurements (price	or to cuts)
			• <u> </u>	
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 8 ft		_		
Drive Penetration: 7 ft		_		
Headspace Measurement: 1 in				
	= 72 in	- _		
Recovery Percentage:	86%	- at		
Total Length of Core To Process: 72 in	1	- Ler		
		Core Tube Length		
Drive Notes:		-		
Drove to refusal				
			—	
Core Field Observations and Description	ription:		olor, minor modifier, MAJOR modifier, o ic layer, debris, plant matter, shells, bic	
No visible layers, grayish clay through	out core	odor, sneem, layering, anox	io layer, debris, plant matter, shells, bio	, tu
Tio Ficiolo layoro, grayion diay undugi				
Notes:				
Grain size samples @ 1-ft intervals				
The same same same same same same same sam				

ANCHOR Sec	diment Core	Collection Lo	og	Page 7 of 24
Job: Grand Lake Vibracore		Station ID:	03.1-1	raye / 01 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			/11/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plan N	- -
Field Collection Countington				
Field Collection Coordinates: Lat/Northing: 660811 ft		Long/Easting:	2910646 ft	_
A. Water Depth	B Water Lev	vel Measurements	C. Mudline Elevation	_
DTM Depth Sounder: 1.5 ft	Time:	15:30	742.7 ft	
DTM Lead Line:	Height:	744.2 ft	742.7 IL	_
B TW Edda Ellio.	1 loight.	777.2 10	Recovery Measurements (prio	r to cuts)
	'		• —	
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 11 ft		_		
Drive Penetration: 36 in		_		
Headspace Measurement: 3 in			, '	
	in = 33 in	_ _		
	92%	- de		
Total Length of Core To Process: 33 in		_ -		
Drive Notes:		Core Tube Length		
Drove to refusal				
Thick clay]	
			*	
Core Field Observations and Descri	ption:		color, minor modifier, MAJOR modifier, o xic layer, debris, plant matter, shells, bio	
Appears to be clay, no visible layers				
Very firm, limited penetration				
Notes:				
110.63.				
Grain size samples @ 1-ft intervals				
The same same same same same same same sam				

V ANCHOR OEA Sed	iment Core	Collection Lo	og	Page 8 of 24
Job: Grand Lake Vibracore		Station ID:	03.1-2	3.1.1
Job No: 212451-01.01		Attempt No.	2	
Field Staff: RC, TK, BT			/11/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plan N	_
				_
Field Collection Coordinates:				
Lat/Northing: 660811 ft		Long/Easting:	2910646 ft	_
A. Water Depth	B. Water Lev	vel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 1.5 ft	Time:	15:45	742.7 ft	_
DTM Lead Line:	Height:	744.2 ft		_
			Recovery Measurements (price	or to cuts)
Core Collection Recovery Details:			†	
Core Accepted: Yes				
Core Tube Length: 8 ft				
Drive Penetration: 3.0 ft		_	+	
Headspace Measurement: 1 in		_		
			1	
•	70/	ے ا		
·	7%	_ at		
Total Length of Core To Process: 35 in		_ _		
Drive Notes:		Core Tube Length		
Drove to refusal				
			'	
			 	
		T		
Core Field Observations and Descrip	tion:	Sediment type, moisture, o	color, minor modifier, MAJOR modifier, o	other constituents,
		odor, sheen, layering, ano	xic layer, debris, plant matter, shells, bio	ota
Some air bubbles in top foot; limited else	ewnere			
Thick, hard clay material				
Notes:				
Grain size samples @ 1-ft intervals				
				

ANCHOR OEA SEE	edime	ent Core	Collection	Lo	g	Page 9 of 24
Job: Grand Lake Vibracore			Station ID:		9.1-1	rage 5 01 24
Job No: 212451-01.01			Attempt No.		1	
Field Staff: RC, TK, BT			Date:	2/1	2/2022	
Contractor: N/A			Logged By:		ВТ	
Vertical Datum: NAVD88			Horizontal Datur	n:	OK State Plane N	
Field Collection Coordinates: Lat/Northing: 612772 ft			Long/Easting:		2912054 ft	
A. Water Depth	 R	Water Leve	l Measurements		C. Mudline Elevation	
DTM Depth Sounder: 14.5 ft	_	ime:	12:55		730.0 ft	
DTM Lead Line:			744.5 ft		730.011	
D TW Edda Emo.	<u></u>	oigiit.	744.010		Recovery Measurements (prior	to cuts)
					• -	·
Core Collection Recovery Details:						
Core Accepted: Yes						
Core Tube Length: 16 ft						
Drive Penetration: 2 ft						
Headspace Measurement: 3 in						
Recovery Measurement: 18				_		
Recovery Percentage:	75%			[]	1 1	
Total Length of Core To Process: 18	in			Core Tube Length		
Drive Nates				l pe		
Drive Notes:				-		
Driven to refusal				형		
					• * • • • • • • • • • • • • • • • • • • •	
Care Field Observations and Dec						
Core Field Observations and Des	cription:				lor, minor modifier, MAJOR modifier, oth c layer, debris, plant matter, shells, biota	
Soft to ~6 in, firmer below						
Gray silt/clay with no apparent layeri	ng					
Notes:						
Collected grain size samples @ 1-ft	intervals					

ANCHOR See	diment Core	Collection Lo	og	Page 10 of 24
Job: Grand Lake Vibracore		Station ID:	9.1-2	raye IV UI 24
Job No: 212451-01.01		Attempt No.	2	_
Field Staff: RC, TK, BT			/12/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	- -
Field College Consultration				
Field Collection Coordinates: Lat/Northing: 612772 ft		Long/Easting:	2912054 ft	_
A. Water Depth	B Waterley	rel Measurements	C. Mudline Elevation	_
DTM Depth Sounder: 14.5 ft	Time:	12:55	730.0 ft	
DTM Lead Line:	Height:	744.5 ft	730.011	_
D TW Load Line.	1 loight.	744.010	Recovery Measurements (prio	r to cuts)
			• -	
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 8 ft		_		
Drive Penetration: 2 ft		_		
Headspace Measurement: 8 in			, '	
Recovery Measurement: 12 in		_ _		
Recovery Percentage:	50%	_ fg		
Total Length of Core To Process: 12 in		Core Tube Length		
Drive Nates				
Drive Notes:		——————————————————————————————————————		
Driven to refusal		S		
			'	
			• <u>• • </u>	
Core Field Observations and Descri	ption:	Sediment type, moisture, c	color, minor modifier, MAJOR modifier, o	ther constituents,
		odor, sheen, layering, anox	kic layer, debris, plant matter, shells, bio	ta
Soft material in top ~6 in, firmer below				
Gray silt/clay with no visible layers				
Notes:				
Grain size sampling @ 1-ft intervals				
Grain Size Sampling (@ 1-it intervals				

ANCHOR Sec	liment Core	Collection Lo	og	Page 11 of 24
Job: Grand Lake Vibracore		Station ID:	8.2-1	ruge II ol 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			/12/2022	_
Contractor: N/A		Logged By:	BT	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
				_
Field Collection Coordinates:				
Lat/Northing: 619613 ft		Long/Easting:	2917399 ft	_
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 17.5 ft	Time:	13:55	727.0 ft	_
DTM Lead Line:	Height:	744.5 ft		
			Recovery Measurements (prio	r to cuts)
Core Collection Recovery Details:			†	
Core Accepted: Yes				
•				
Core Tube Length: 16 ft Drive Penetration: 3 ft		_		
		_		
Headspace Measurement: 2 in			,	
Recovery Measurement: 24 in	>=0/	- _		
	67%	- j ō	' '	
Total Length of Core To Process: 24 in		_		
Duive Notes		Core Tube Length		
Drive Notes:				
Driven to refusal		į		
			'	
			 	
		1		
Core Field Observations and Descrip	otion:		color, minor modifier, MAJOR modifier, o xic layer, debris, plant matter, shells, bio	
Softer, water-logged clay in first ~12 in,	firmer ~12-24 in	odor, sneen, layering, and	no layer, debris, plant matter, shells, blo	
Conter, water-logged day in first 12 iii,	1111101 12-24 111			
Notes:				
Grain size sampling @ 1-ft intervals				

V ANCHOR Sed	liment Core	Collection L	.og	Dogo 40 - 504
Job: Grand Lake Vibracore		Station ID:	6.1-1	Page 12 of 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			2/12/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	- -
Field Collection Coordinates:				
Lat/Northing: 636016 ft		Long/Easting:	2923350 ft	_
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 7.5 ft	Time:	14:45	726.9 ft	
DTM Lead Line:	Height:	744.4 ft		_
			Recovery Measurements (prio	r to cuts)
	·		• -	
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 16 ft		_	-	
Drive Penetration: 1.5 ft		_		
Headspace Measurement: 6 in Recovery Measurement: 12 in			¬	
	67%	ء -	=	
Total Length of Core To Process: 12 in	70	_ 7		
Total Length of Gold To 1 100033. 12 III		<u> </u>		
Drive Notes:		Toro Linke Length		
Driven to refusal		ا ا	<u> </u>	
Possibly hung up on underwater debris	or buried lea/reek		3	
Possibly flurig up on underwater debris	or buried log/rock		」 	
			•	
Core Field Observations and Descrip	ition:	Sediment type, moisture	, color, minor modifier, MAJOR modifier, o	ther constituents.
			noxic layer, debris, plant matter, shells, bio	
Soft, grayish silt/clay - suggests caught	on buried material	or would have driven t	further	
Notes:				
Grain size samples collected @ 1-ft inte	rvals			

V ANCHOR OEA SE	diment Core	Collection L	_og	Page 42 cf 24
Job: Grand Lake Vibracore		Station ID:	06.2-1	Page 13 of 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			2/12/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
Field Collection Coordinates:				
Lat/Northing: 636017 ft		Long/Easting:	2923048 ft	_
A. Water Depth	B. Water Lev	vel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 4.5 ft	Time:	15:00	739.7 ft	
DTM Lead Line:	Height:	744.2 ft		_
_			Recovery Measurements (prio	r to cuts)
Core Collection Recovery Details:			†	
Core Accepted: Yes				
Core Tube Length: 16 ft				
Drive Penetration: 7 ft		_		
Headspace Measurement: 4 in		_		
Recovery Measurement: 76 ir	1		\neg \mid \mid \mid \mid	
Recovery Percentage:	90%	<u> </u>		
Total Length of Core To Process: 76 in	1	_ 3		
Drive Notes:		F		
Driven to refusal		5	Š	
			~ 	
			_	
			• L	
Core Field Observations and Descr	iption:		e, color, minor modifier, MAJOR modifier, o	
Grayish silt/clay throughout, no obviou	ie lavere	odor, sneen, layering, ar	noxic layer, debris, plant matter, shells, bio	ta
Firmer clay near bottom	is layers			
i imor day near bettern				
Notes:				
Grain size samples @ 1-ft intervals				
C.a Size samples & Trintorvals				

ANCHOR Se	ediment Core	Collection Lo	og	Demo 44 - 504
Job: Grand Lake Vibracore		Station ID:	06.2-2	Page 14 of 24
Job No: 212451-01.01		Attempt No.	2	_
Field Staff: RC, TK, BT			/12/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
Field Collection Coordinates: Lat/Northing: 636017 ft		Long/Easting:	2923048 ft	
				_
A. Water Depth		vel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 4.5 ft	Time:	15:20	739.7 ft	_
DTM Lead Line:	Height:	744.2 ft	Recovery Measurements (prio	r to cute)
			recovery measurements (prio	i to cuts)
Core Collection Recovery Details:			†	
Core Accepted: Yes				
Core Tube Length: 10 ft		_		
Drive Penetration: 7 ft		_		
Headspace Measurement: 2 in		_		
Recovery Measurement: 81 i	า]	
Recovery Percentage:	96%			
Total Length of Core To Process: 81 i	า	Core Tube Length		
Drive Notes:		-	 	
Driven to refusal		ore		
		o		
			[」]	
			.	
Core Field Observations and Desc	ription:		color, minor modifier, MAJOR modifier, o xic layer, debris, plant matter, shells, bio	
Grayish silt/clay throughout, no obvio	ıs lavers	euer, eneen, layering, une	no lajer, desire, plant matter, enene, sie	
Firm, especially near bottom of core	ao layero			
Timi, especially fiear pottern of core				
Notes:				
Grain size sampling @ 1 ft intervals				
Grain Size Sampling (@ 1 It litter vals				

ANCHOR Se	diment Core	Collection Lo	og	Page 45 of 24
Job: Grand Lake Vibracore		Station ID:	07.1-1	Page 15 of 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			/12/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
Field Collection Coordinates: Lat/Northing: 626482 ft		Long/Easting:	2914670 ft	
Laurioriting. 020402 it		Long/Lasting.	291407011	=
A. Water Depth	B. Water Lev	vel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 6 ft	Time:	16:00	738.5 ft	_
DTM Lead Line:	Height:	744.5 ft		
			Recovery Measurements (prio	r to cuts)
Core Collection Recovery Details:			↑ <u> </u>	
Core Accepted: Yes				
Core Tube Length: 16 ft				
Drive Penetration: 5.5 ft		_		
Headspace Measurement: 5 in		_		
Recovery Measurement: 57 i	า	_	1	
Recovery Percentage:	86%	_ fg		
Total Length of Core To Process: 57 i	า	en Sine.		
Drive Notes:		Core Tube Length		
Driven to refusal		ore		
		Ŏ		
]	
			•	
Core Field Observations and Desc	ription:		color, minor modifier, MAJOR modifier, o xic layer, debris, plant matter, shells, bio	
Worm @ ~6 in from surface, signs of	biotic activity	odor, choon, layoning, and	no layor, dobito, plant matter, onollo, blo	
Gray silt/clay, no visible layers	biolio dolivity			
Cray one oray, no violate tayore				
Notes:				
Grain size samples @ 1 ft intervals				

ANCHOR Sedi	ment Core	Collection L	.og	Page 16 of 24
Job: Grand Lake Vibracore		Station ID:	7.2-1	1 ugc 10 01 24
Job No: 212451-01.01	_	Attempt No.	1	_
Field Staff: RC, TK, BT	_		2/12/2022	_
Contractor: N/A	_	Logged By:	BT	
Vertical Datum: NAVD88	_	Horizontal Datum:		_
	_		-	_
Field Collection Coordinates:				
Lat/Northing: 626591 ft	<u> </u>	Long/Easting:	2914380 ft	<u> </u>
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 17.5 ft	Time:	16:15	726.8 ft	_
DTM Lead Line:	Height:	744.3 ft	·	
			Recovery Measurements (price	or to cuts)
			+	
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 16 ft		_		
Drive Penetration: 7 ft		_		
Headspace Measurement: 2 in			_ '	
Recovery Measurement: 79 in	.,	- _	_	
Recovery Percentage: 94	%	- j	·	
Total Length of Core To Process: 79 in		_		
.		Core Tube length		
Drive Notes:		F	-	
Driven to refusal				
			^	
			_	
			↓	
Core Field Observations and Descripti	on:		, color, minor modifier, MAJOR modifier,	
Significant toyture shares © 40 in 6	r obove saletele		noxic layer, debris, plant matter, shells, bio	ла
Significant texture change @ ~12 in, softe	above, visibly s	ımılar ciay/siit		
Notes:				
Notes:				
One in a in a count of the interest of the int				
Grain size samples @ 1-ft interval				

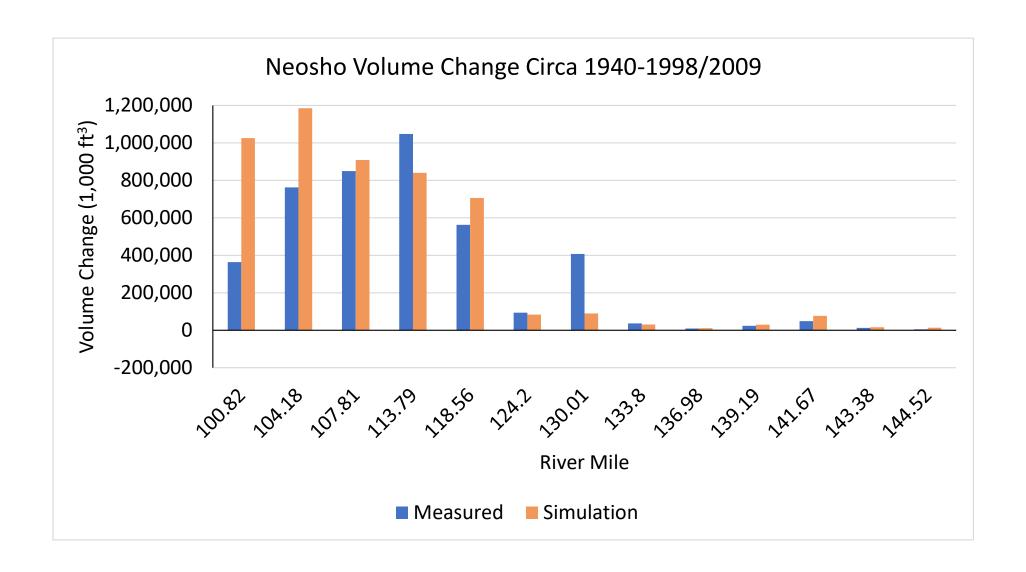
V ANCHOR Sed	iment Core	Collection Lo	og	Page 17 of 24
Job: Grand Lake Vibracore		Station ID:	4.1-1	Page 17 01 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			13/2022	_
Contractor: N/A		Logged By:	BT	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
				_
Field Collection Coordinates:				
Lat/Northing: 649883 ft		Long/Easting:	2925261 ft	_
A. Water Depth	B. Water Lev	vel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 6 ft	Time:	10:50	738.5 ft	_
DTM Lead Line:	Height:	744.5 ft		_
			Recovery Measurements (price	r to cuts)
Como Collegation Decomes Datailes			†	
Core Accepted: Voc				
Core Accepted: Yes				
Core Tube Length: 11 ft Drive Penetration: 5 ft		_	-	
		_		
Headspace Measurement: 3 in Recovery Measurement: 49 in			1	
*	2%	ے ا		
Recovery Percentage: 8 Total Length of Core To Process: 49 in	2 70	_ lu		
Total Length of Core To Process. 49 III		<u>-</u> e		
Drive Notes:		Core Tube Length		
Possibly caught on buried tree branch o	r athan dahnia			
		0		
Core Field Observations and Descrip	tion:		color, minor modifier, MAJOR modifier, o kic layer, debris, plant matter, shells, bio	
Core catcher shoved into core tube sugg	gests it wasn't cau	ght on debris; thick clay	layer stopping drive more likely	
Firm clay near bottom, soft silty/clayey la				
	, , g		<u>-</u>	
Notes:				
Grain size campling @ 1 # intervals				
Grain size sampling @ 1-ft intervals				

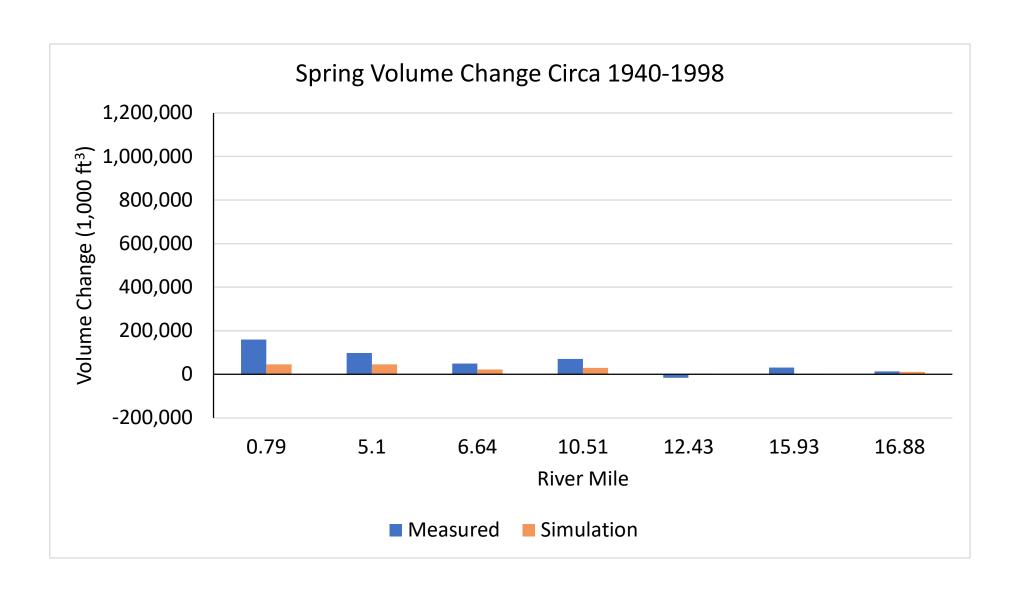
ANCHOR Sec	diment Core	Collection Lo	og	Page 18 of 24
Job: Grand Lake Vibracore		Station ID:	4.2-1	. ugo 10 01 24
Job No: 212451-01.01		Attempt No.	1	_
Field Staff: RC, TK, BT			13/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	- -
Field Collection Countington				
Field Collection Coordinates: Lat/Northing: 650123 ft		Long/Easting:	2926237 ft	_
	B Water Lev	rel Measurements	C. Mudline Elevation	_
A. Water Depth DTM Depth Sounder: 2 ft	Time:	11:20		
DTM Lead Line:			742.5 ft	_
DTW Lead Line.	Height:	744.5 ft	Recovery Measurements (prio	r to cuts)
	-		• — I	. 10 0010)
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 12 ft		<u>_</u>		
Drive Penetration: 8 ft		<u> </u>	†	
Headspace Measurement: 2 in		_		
Recovery Measurement: 92 in				
Recovery Percentage:	96%	gth		
Total Length of Core To Process: 92 in		- -euć		
Drive Notes:		Core Tube Length		
Significantly deeper penetration here th	an nearby Site 4.1	ore		
Drove to refusal		0		
			—	
Core Field Observations and Descri	ption:		olor, minor modifier, MAJOR modifier, c	
Organic debris on surface of core (~1-2) inches) - sticks & I		ao layor, aozine, piani maker, enene, zie	
Softer material @ surface, firmer in dee	•	caves		
Softer material @ surface, filmer in dec	eper parts or core			
Notes:				
110163.				
Grain size samples @ 1-ft interval				

ANCHOR OEA	Sedim	ent Core	Collection	Lo	g	Page 19 of 24
Job: Grand Lake Vibracore			Station ID:		GL1-1	1 age 13 01 24
Job No: 212451-01.01			Attempt No.		1	•
Field Staff: RC, TK, BT			Date:	2/1	13/2022	•
Contractor: N/A			Logged By:		ВТ	•
Vertical Datum: NAVD88			Horizontal Datu	m:	OK State Plane N	•
						•
Field Collection Coordinates:						
Lat/Northing: 647148 ft			Long/Easting:		2915104 ft	
A. Water Depth		B. Water Leve	el Measurements		C. Mudline Elevation	
DTM Depth Sounder: 2 ft	·	Time:	12:05		742.4 ft	
DTM Lead Line:	·	Height:	744.4 ft			
					Recovery Measurements (prior	to cuts)
Core Collection Recovery Details					†	
Core Accepted: Yes	5.					
-						
Core Tube Length: 14 ft Drive Penetration: 8 ft			-			
) in		-			
	3 in		-			
	90 in		-	اءا		
Recovery Percentage:	94%		-	ngt		
Total Length of Core To Process: 9	90 IN		-	Fe		
Drive Notes:				Core Tube Length		
				e		
Drove to refusal				ပိ		
					'	
					• • • · · · · · · · · · · · · · · · · ·	
Core Field Observations and De	escription	n:	Sediment type, moist	ure. co	olor, minor modifier, MAJOR modifier, oth	ner constituents.
	•				ic layer, debris, plant matter, shells, biota	
Silt and clay, no clear layering						
Notes:						
Grain size sampling @ 1 ft interval	S					

ANCHOR Sec	liment Core	Collection L	_og	
Job: Grand Lake Vibracore		Station ID:	GL1-2	Page 20 of 24
Job No: 212451-01.01		Attempt No.	2	_
Field Staff: RC, TK, BT			2/13/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:		_
				_
Field Collection Coordinates:				
Lat/Northing: 647148 ft		Long/Easting:	2915104 ft	_
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder: 2 ft	Time:	12:22	742.4 ft	
DTM Lead Line:	Height:	744.4 ft		_
			Recovery Measurements (prio	r to cuts)
			• —	
Core Collection Recovery Details:				
Core Accepted: Yes				
Core Tube Length: 14 ft		_		
Drive Penetration: 8 ft		_		
Headspace Measurement: 5 in			¬ '	
Recovery Measurement: 84 in	200/	_	_	
·	38%	_ 7		
Total Length of Core To Process: 84 in		- -		
Drive Notes:			Core Tube Length	
			_ e	
Driven to refusal			3	
			' '	
			• L	
Core Field Observations and Descrip	otion:		e, color, minor modifier, MAJOR modifier, o noxic layer, debris, plant matter, shells, bio	
Sticks and organic debris in top ~12 in	of core	, , ,		
Notes:				
Grain size samples @ 1-ft interval				

ANCHOR OEA SEE	ediment C	ore Collection L	_og	Page 21 of 24
Job: Grand Lake Vibracore		Station ID:	05.1-1	1 uge 2 1 UI 24
Job No: 212451-01.01		Attempt No.	1	
Field Staff: RC, TK, BT			2/13/2022	
Contractor: N/A		Logged By:	ВТ	<u> </u>
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	<u> </u>
Field Collection Coordinates:				
Lat/Northing: 644108 ft		Long/Easting:	2913784 ft	
A. Water Depth	B. Wate	r Level Measurements	C. Mudline Elevation	
DTM Depth Sounder: 2 ft	Time:	13:00	742.5 ft	
DTM Lead Line:	Height:	744.5 ft	772.010	
			Recovery Measurements (pr	rior to cuts)
			•	
Core Collection Recovery Details: Core Accepted: Yes				
Core Tube Length: 12 ft				
Drive Penetration: 11 ft				
Headspace Measurement: 1 i	'n			
	7 in (9'9")		$\neg \mid \mid \mid \mid \mid$	
Recovery Percentage:	89%		s	
Total Length of Core To Process: 11				
	(00)			
Drive Notes:		<u>-</u>		
Driven to refusal, firmer material nea	ar bottom of drive			
			_	
			•	
Core Field Observations and Des	scription:		e, color, minor modifier, MAJOR modifier noxic layer, debris, plant matter, shells, l	
Air bubbles in top ~18 in			•	
Relatively soft silt/clay material throu	uahout. no visible	lavers: gravish sediment		
	g	·, g, ·		
Notes:				
Divided into 4 cm samples for Cs-13	R7 testing			
Divided lifts 4 oil samples for Os-Te	77 (Coung			


ANCHOR QEA	Sedim	nent Core	Collection	ı Lo	g	Page 22 of 24
Job: Grand Lake Vibracore			Station ID:		05.1-2	raye 22 01 24
Job No: 212451-01.01		-	Attempt No.		2	=
Field Staff: RC, TK, BT		-	Date:	2/	13/2022	_
Contractor: N/A		_	Logged By:		ВТ	
Vertical Datum: NAVD88		-	Horizontal Datu	m:	OK State Plane N	-
Field Collection Coordinates:						
Lat/Northing: 644108 ft		<u>-</u>	Long/Easting:		2913784 ft	_
A. Water Depth		B. Water Leve	el Measurements	;	C. Mudline Elevation	
DTM Depth Sounder: 2 ft	_	Time:	13:00			_
DTM Lead Line:	_	Height:	744.5 ft			_
					Recovery Measurements (prior	r to cuts)
Core Collection Recovery Deta	ails:				† []	
Core Accepted: Yes						
Core Tube Length: 12 ft			_			
Drive Penetration: 9.5 ft			-		 	
Headspace Measurement:	2 in		_			
Recovery Measurement:	102 in		_			
Recovery Percentage:	89%		<u>-</u>	ま	1 1 1 1	
Total Length of Core To Process	s: 102 in		-	Core Tube Length		
Drive Notes:				lube		
Driven to refusal, similar to core	05.1.1			<u> </u>		
Driver to relusar, similar to core	03.1-1			8		
			1			
Core Field Observations and	Descriptio	n:			olor, minor modifier, MAJOR modifier, o ic layer, debris, plant matter, shells, bio	
Silt/clay misture throughout core	. no obviou	s lavers	odor, sneem, layering	y, arioxi	io layer, debris, plant matter, shells, blo	.ca
Grayish material, firmer at bottor		- ··· ·y - · · ·				
Notes:						
Grain size samples @ 1 ft interv	als					
, , , , , , , , , , , , , , , , , , , ,						


ANCHOR Sedi	ment Co	re Collection L	.og	Page 23 of 24
Job: Grand Lake Vibracore		Station ID:	05.2-1	
Job No: 212451-01.01		Attempt No.	1	<u></u>
Field Staff: RC, TK, BT		Date:	2/13/2022	
Contractor: N/A		Logged By:	ВТ	
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	
Field Collection Coordinates:				
Lat/Northing: 644002 ft		Long/Easting:	2913396 ft	<u></u>
A. Water Depth	B. Water L	evel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 5.5 ft	Time:	13:22	738.9 ft	
DTM Lead Line:	Height:	744.4 ft		
			Recovery Measurements (pri	ior to cuts)
Core Collection Recovery Details:			†	
Core Accepted: Yes				
Core Tube Length: 16 ft				
Drive Penetration: 10 ft			+	
Headspace Measurement: 1 in				
Recovery Measurement: 107 in			7	
Recovery Percentage: 89	%	<u> </u>	<u>:</u>	
Total Length of Core To Process: 107 in				
Drive Notes:		Core Tube Length		
Driven to refusal; Similar to Site 05.1		<u> </u>		
			5	
			」 	
			• <u>• • </u>	
Core Field Observations and Description	on:		color, minor modifier, MAJOR modifier,	
No visible layers; grayish silt/clay through	out core softer		oxic layer, debris, plant matter, shells, b	iota
The visible layers, grayism silvelay timough	out core, sorter	rical Sariace, but all wa	3 maneable	
Notes:				
Collected samples for cesium-137 analys	is every 4 cm			

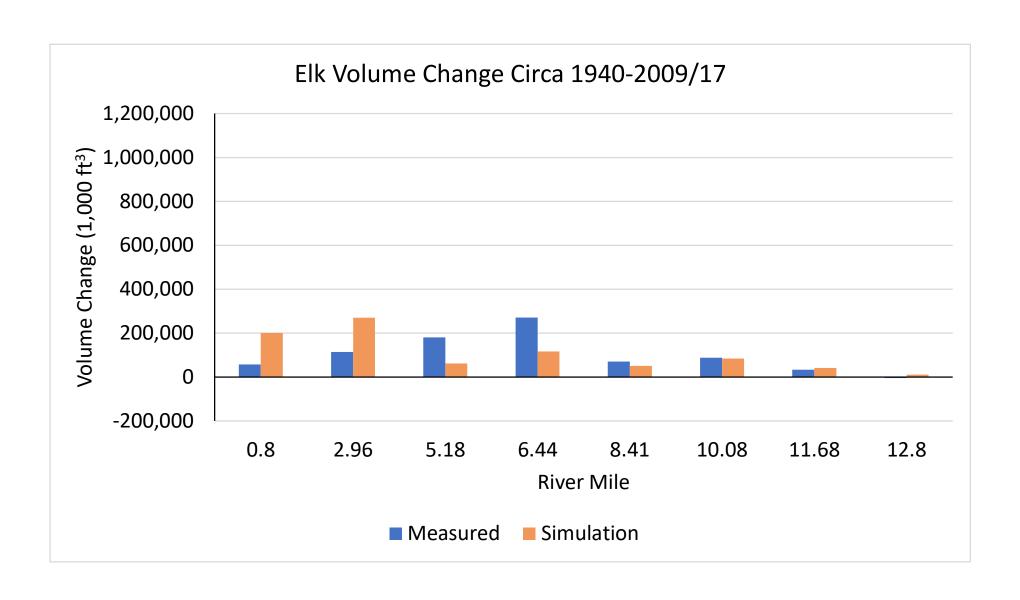
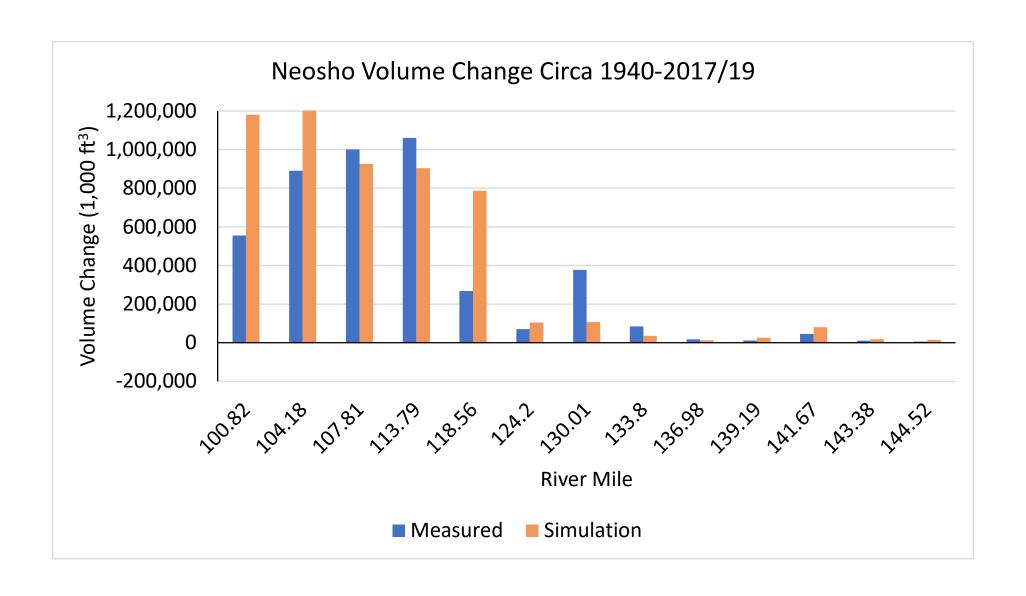
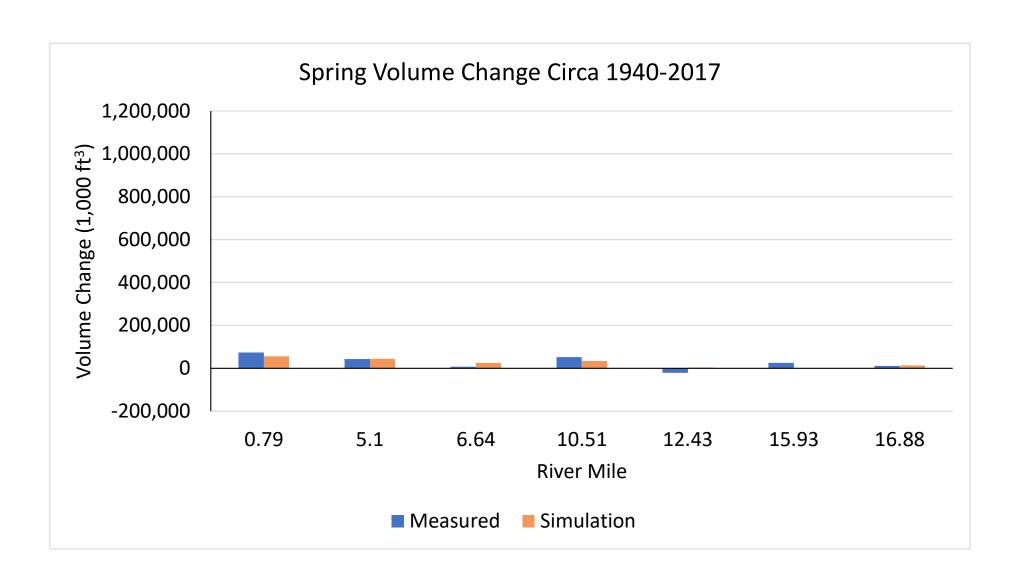
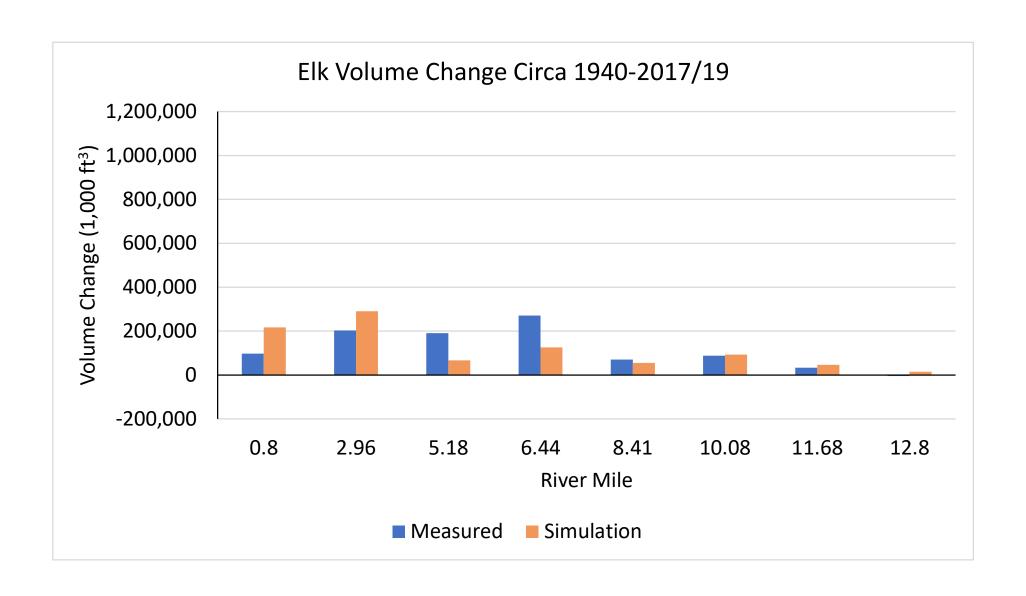
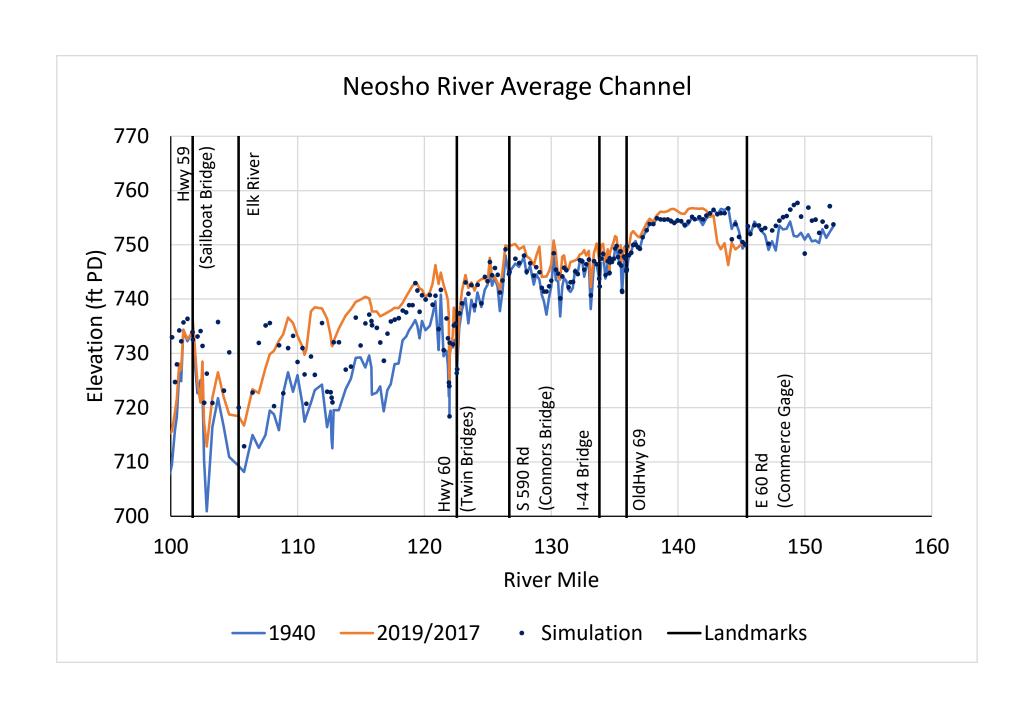

V ANCHOR OEA SE	diment Core	Collection L	og	Page 24 of 24
Job: Grand Lake Vibracore		Station ID:	05.2-2	r aye 24 01 24
Job No: 212451-01.01		Attempt No.	2	_
Field Staff: RC, TK, BT			2/13/2022	_
Contractor: N/A		Logged By:	ВТ	_
Vertical Datum: NAVD88		Horizontal Datum:	OK State Plane N	_
Field Collection Coordinates:				
Lat/Northing: 644002 ft		Long/Easting:	2913396 ft	_
A. Water Depth	B. Water Lev	vel Measurements	C. Mudline Elevation	
DTM Depth Sounder: 5.5 ft	Time:	13:40	738.9 ft	
DTM Lead Line:	Height:	744.4 ft		_
			Recovery Measurements (prio	r to cuts)
Core Collection Recovery Details:			† <u> </u>	
Core Accepted: Yes				
Core Tube Length: 16ft		_		
Drive Penetration: 10 ft		_		
Headspace Measurement: 2 in		_	[
Recovery Measurement: 102	n		7	
Recovery Percentage:	85%	_ 		
Total Length of Core To Process: 102	n			
		Core Tube Length		
Drive Notes:		-		
Driven to refusal		į		
			-	
			• 	
Core Field Observations and Descr	iption:	Sediment type, moisture,	color, minor modifier, MAJOR modifier, o	ther constituents,
			oxic layer, debris, plant matter, shells, bio	ta
Grayish silt/clay throughout, very malle	eable; softer at surfa	ce, no visible layers		
Notes:				
Collected grain size samples @ 1 ft in	rervals			
Consoled grain size samples (g) 1 It III	.c.i vais			

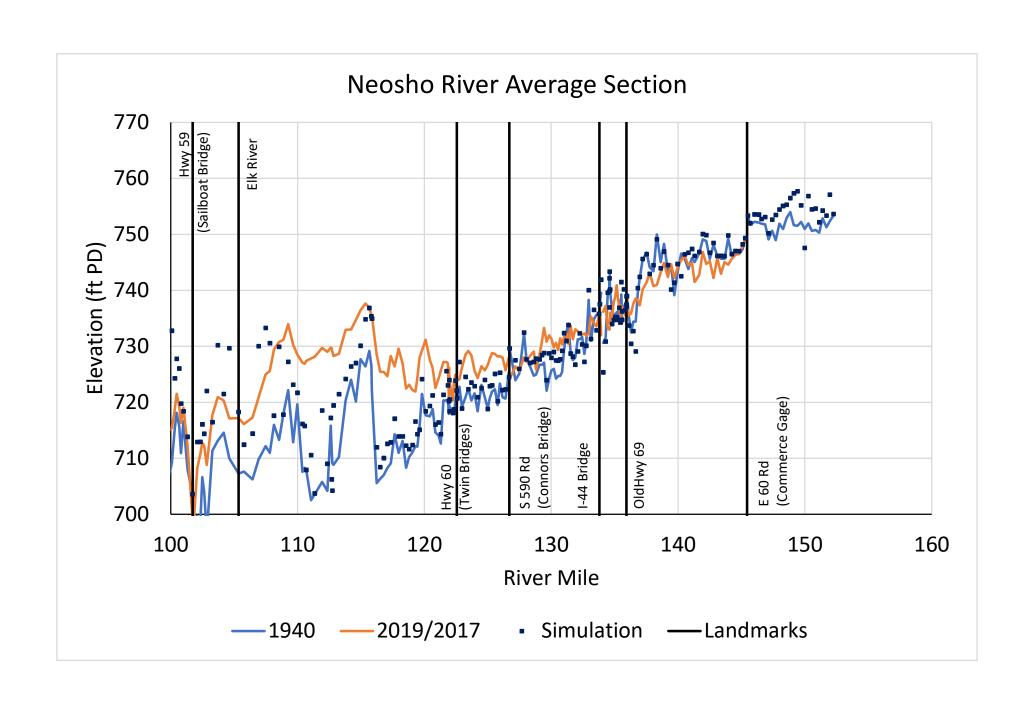
Exhibit 6 STM Results

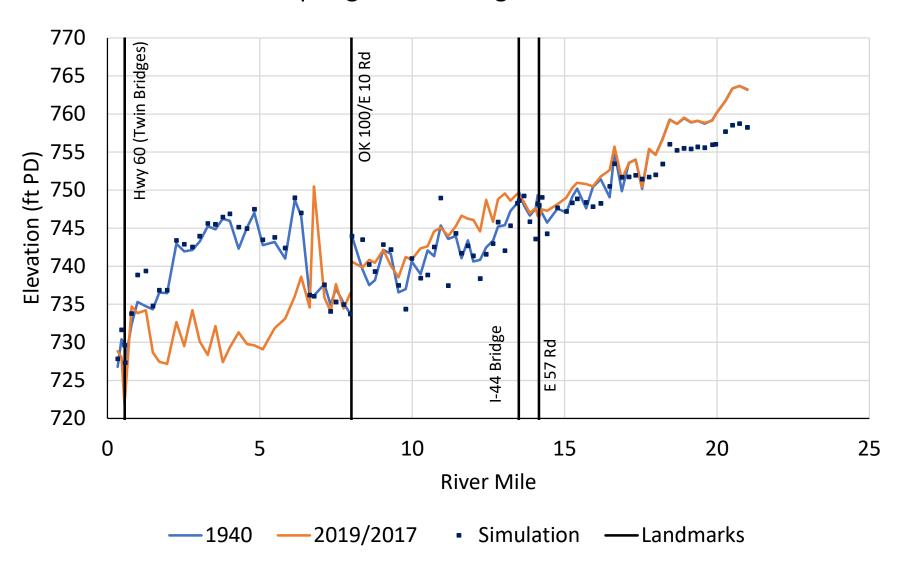

Calibration Plots



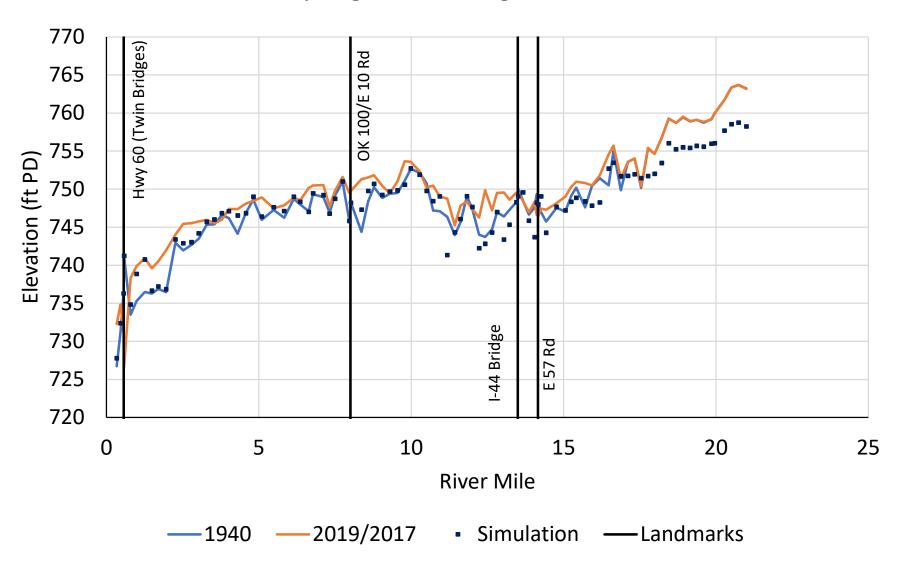


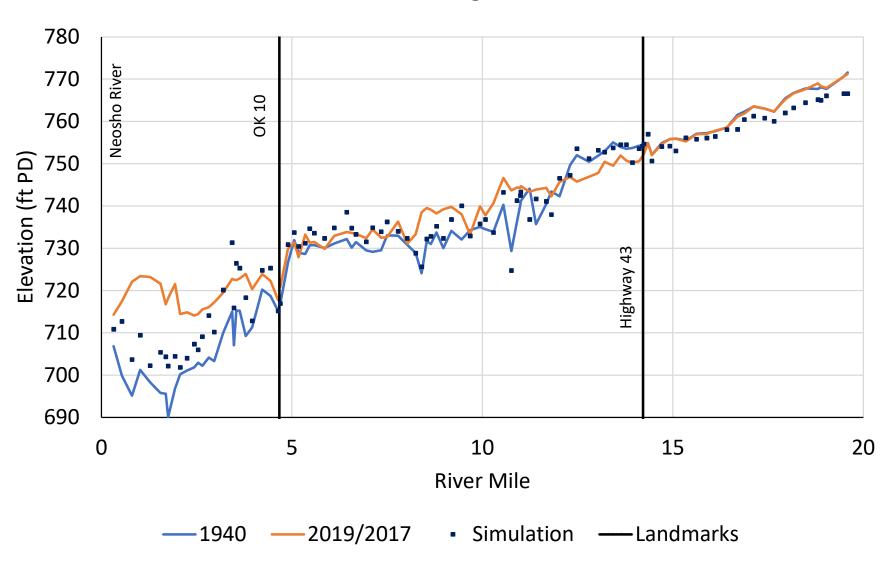

Validation Plots

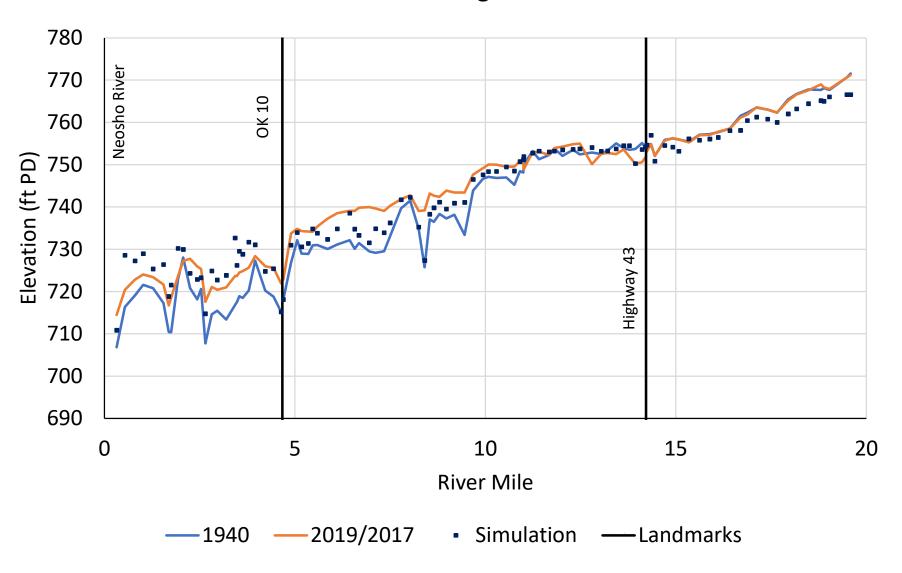


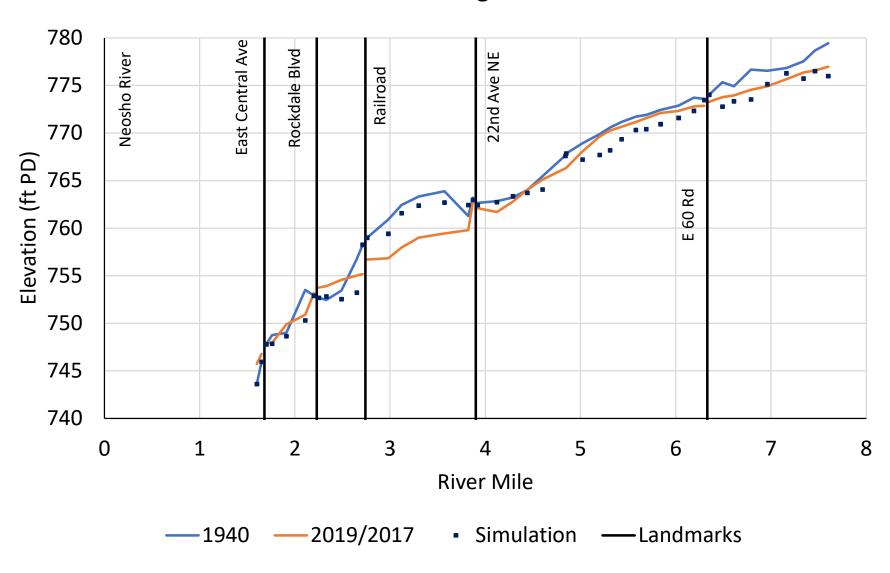


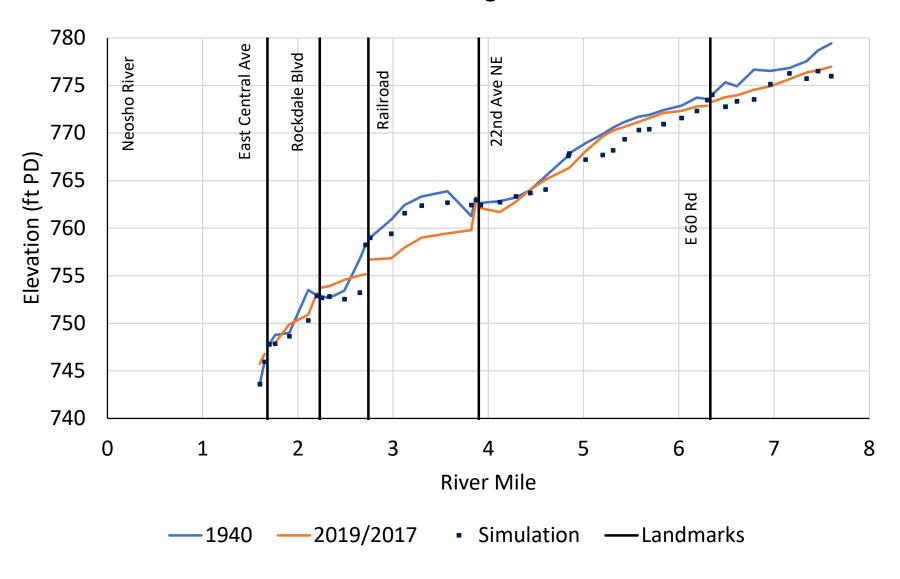
Simulated 2019 Average Channel and Average Section Plots

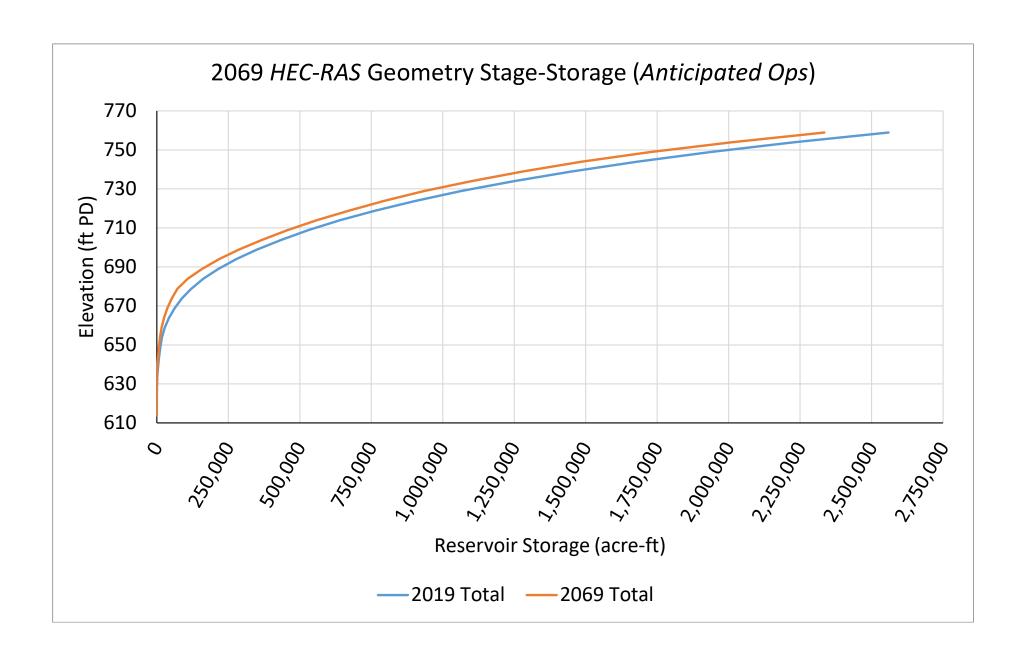


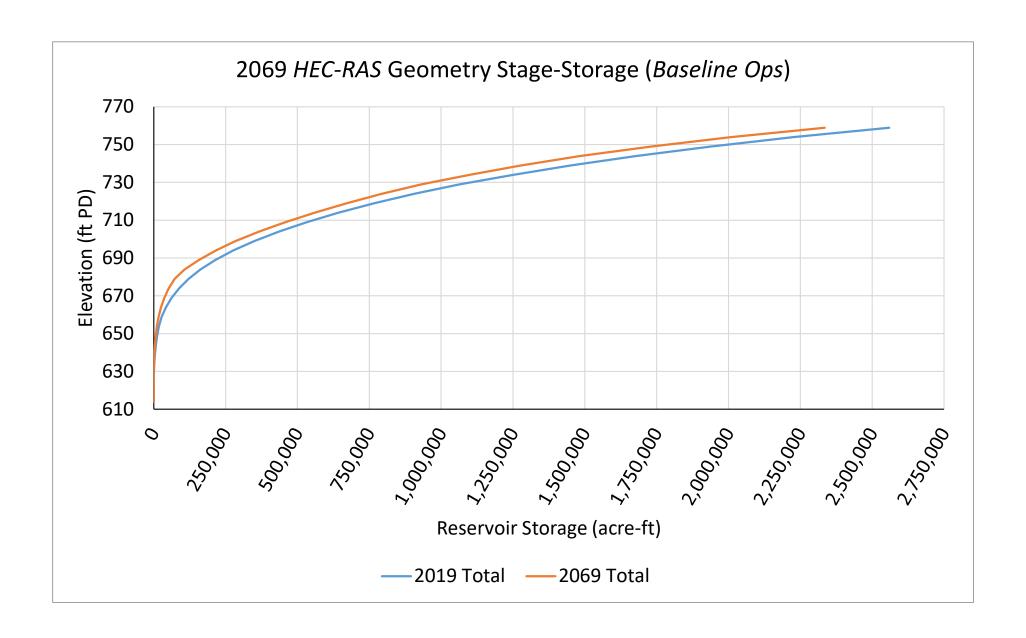

Spring River Average Channel

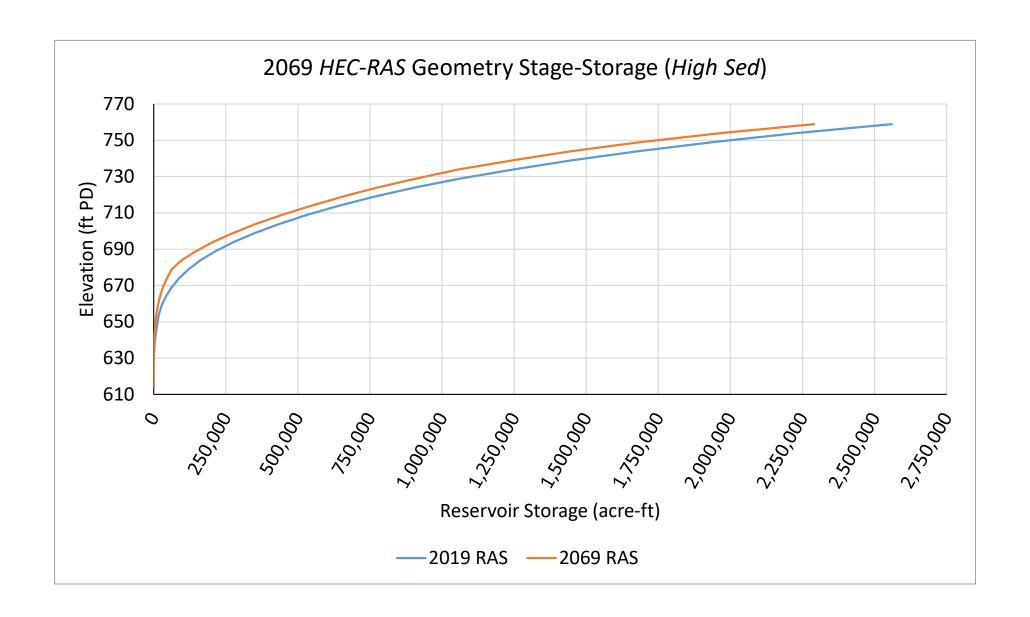

Spring River Average Section

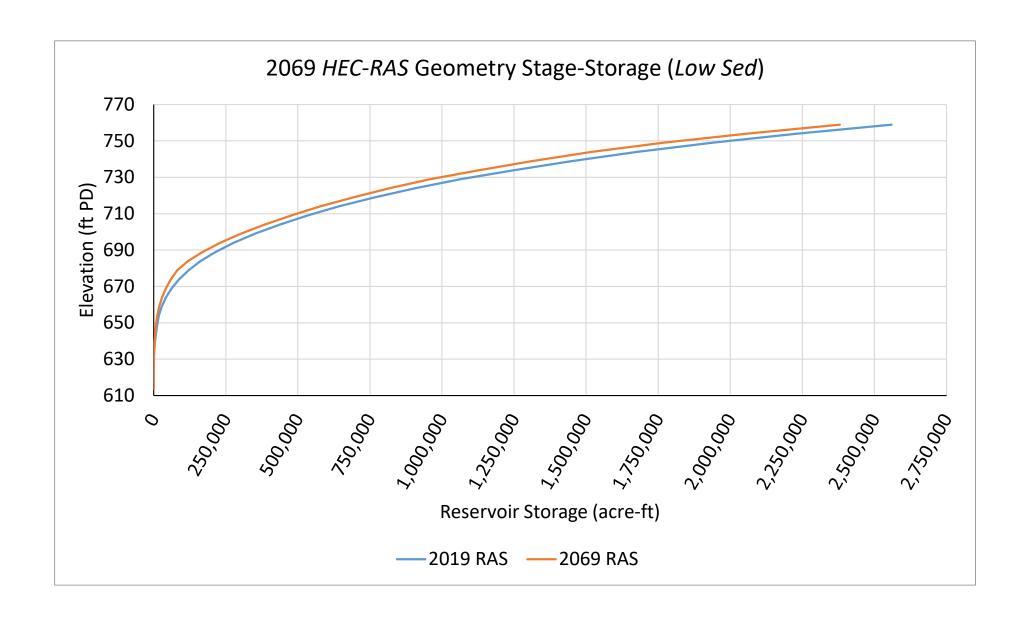

Elk River Average Channel


Elk River Average Section

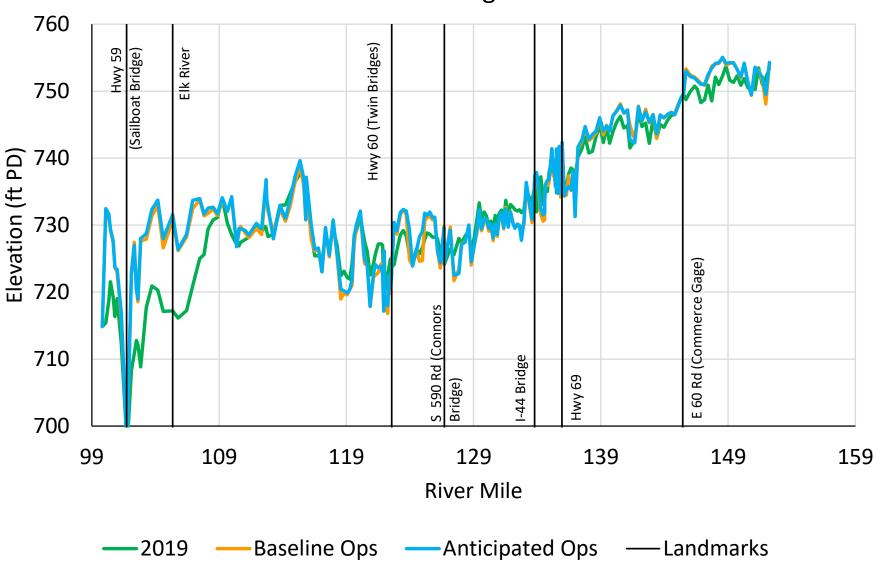

Tar Creek Average Channel

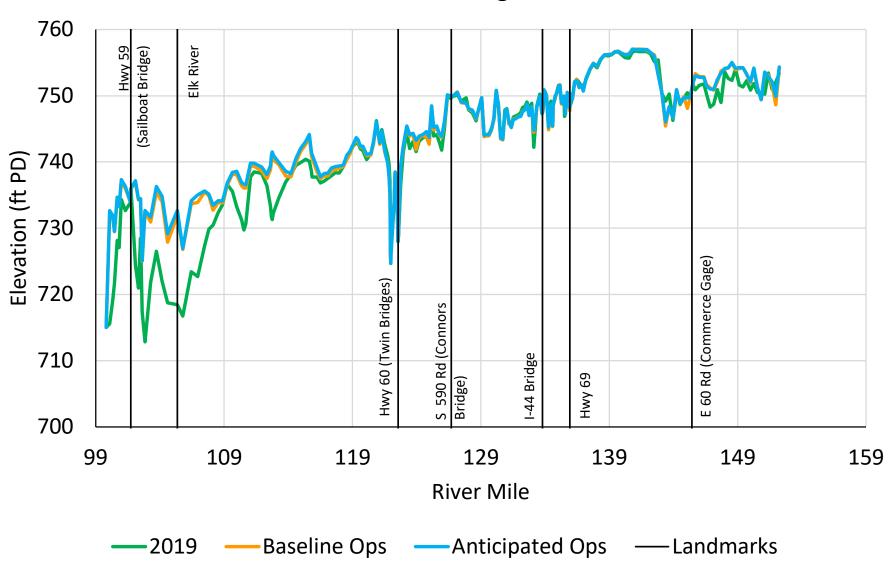



Tar Creek Average Section

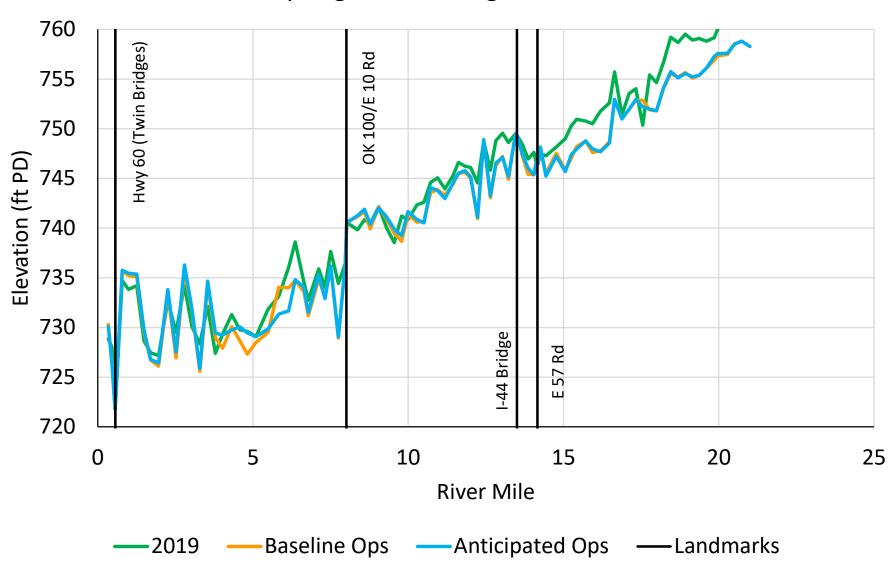


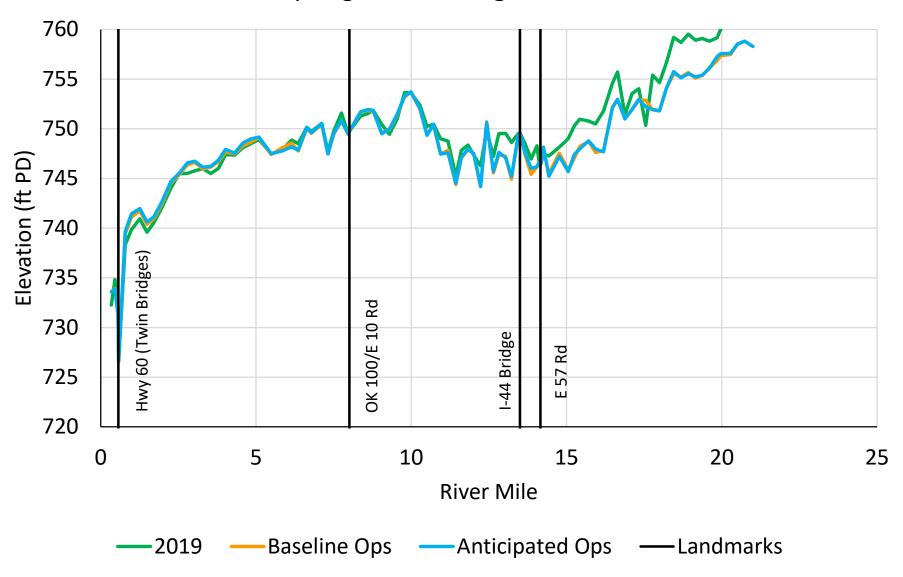
Simulated HEC-RAS Stage-Storage Curves

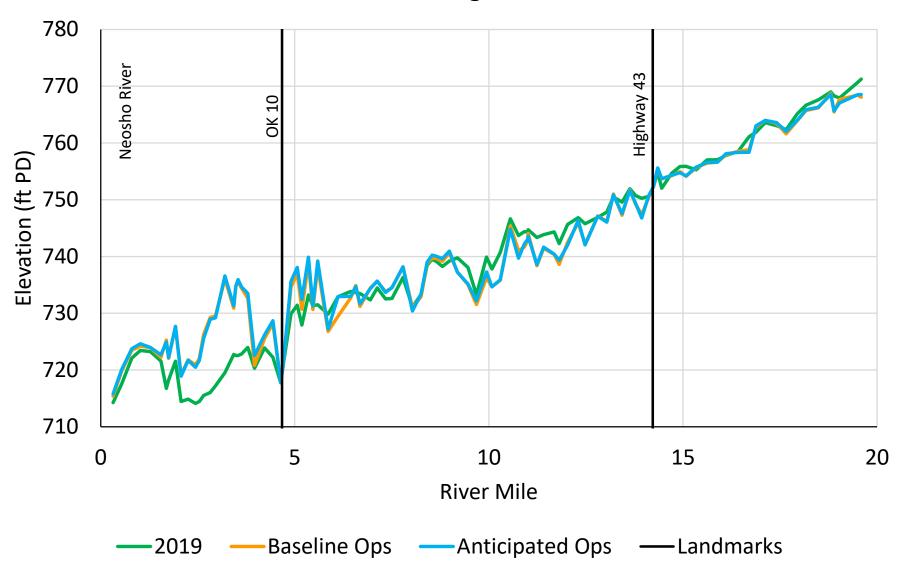


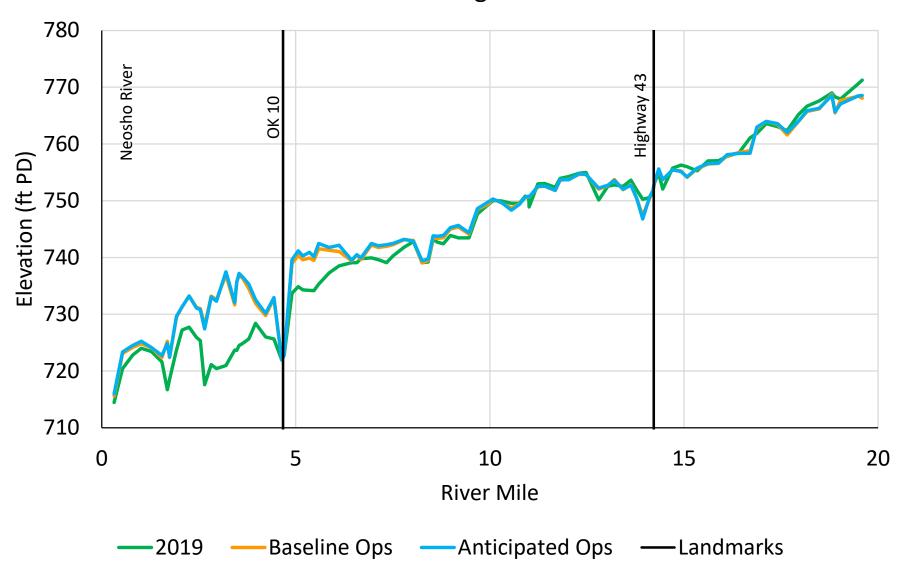


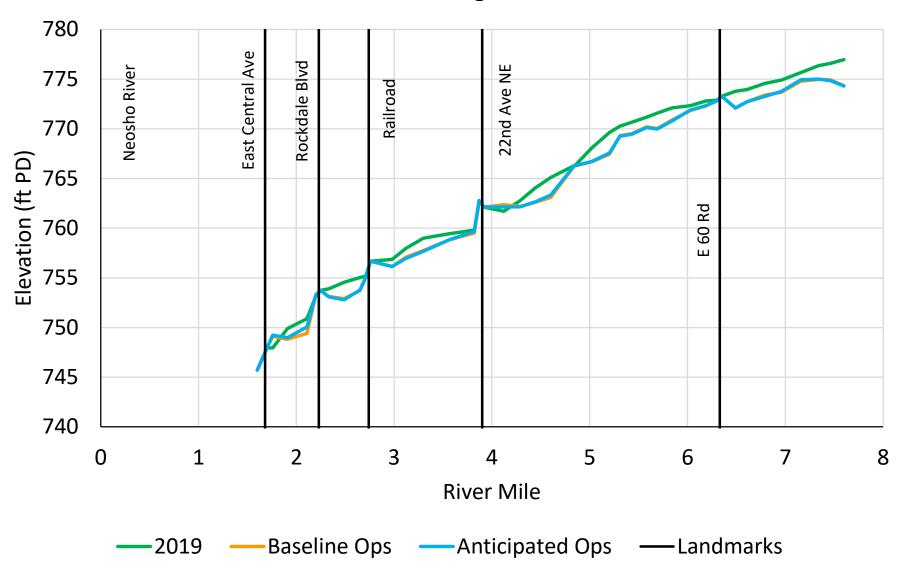
Simulated Future Average Channel and Average Section Plots – Operations Comparison

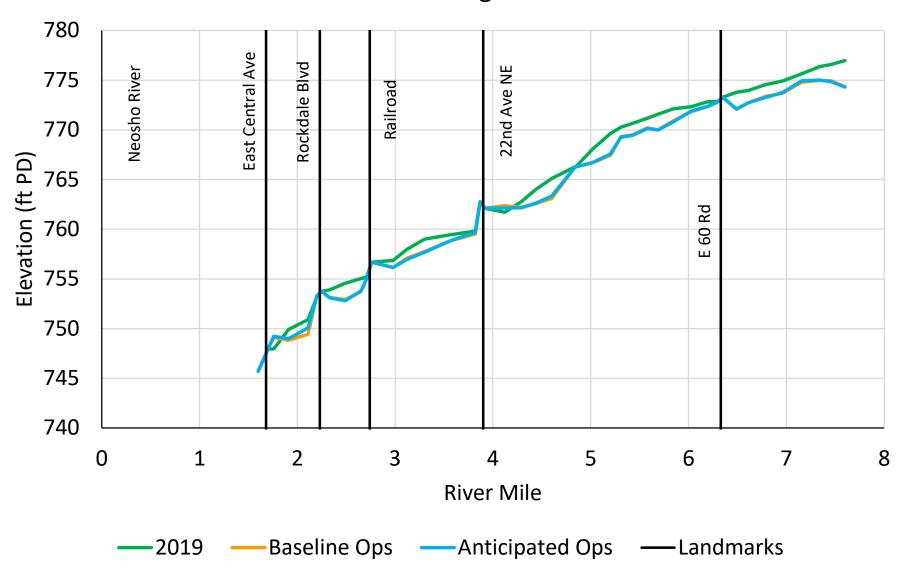

Neosho River Average Channel


Neosho River Average Section


Spring River Average Channel

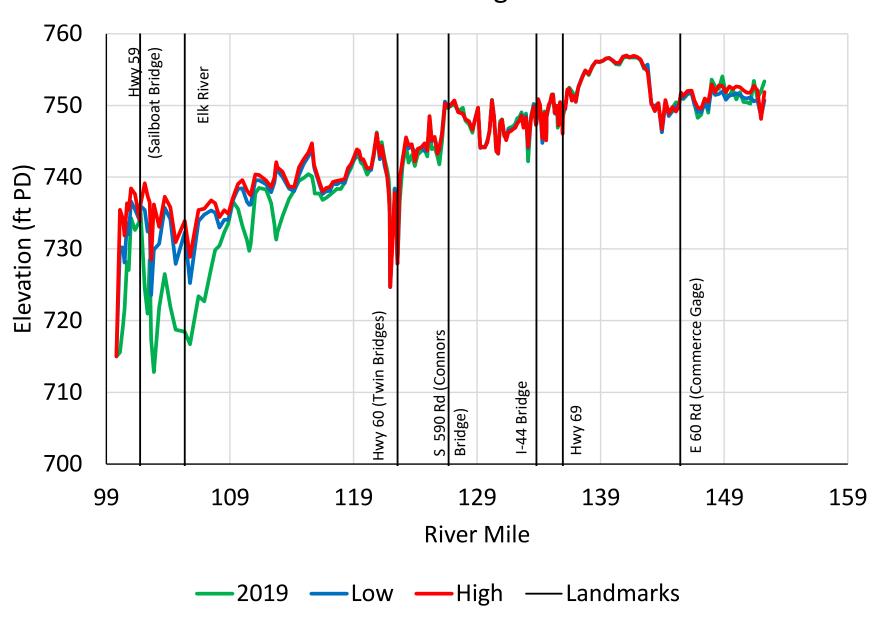

Spring River Average Section


Elk River Average Channel

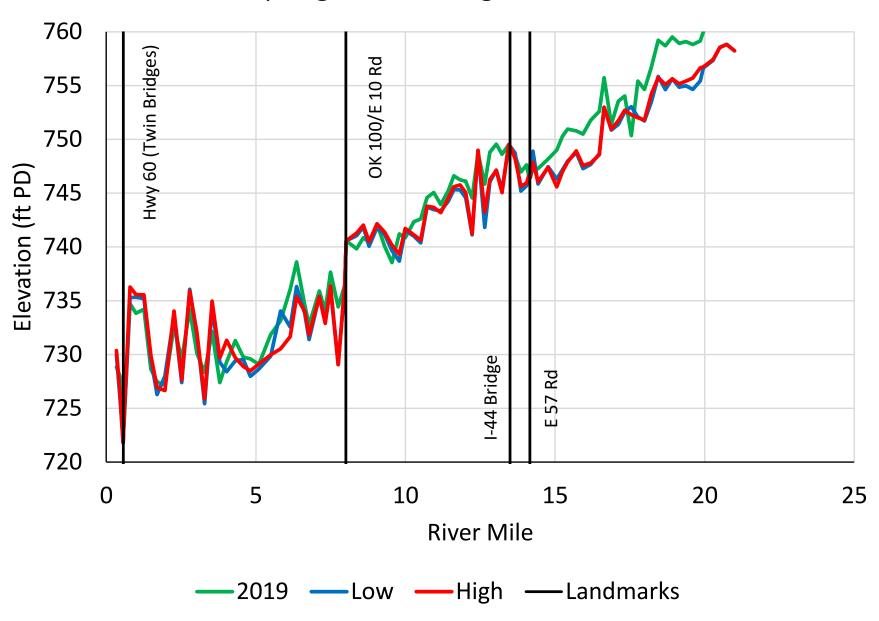

Elk River Average Section

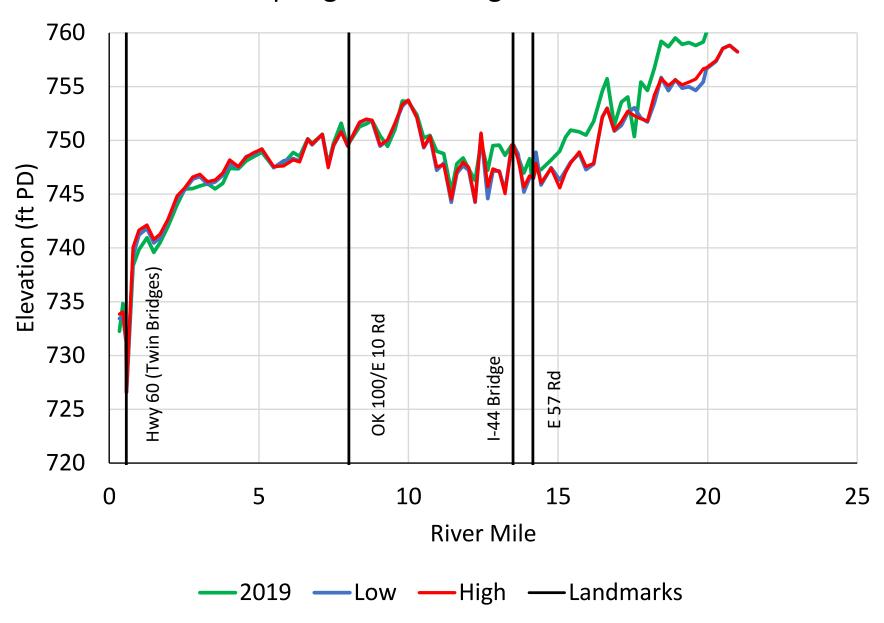
Tar Creek Average Channel

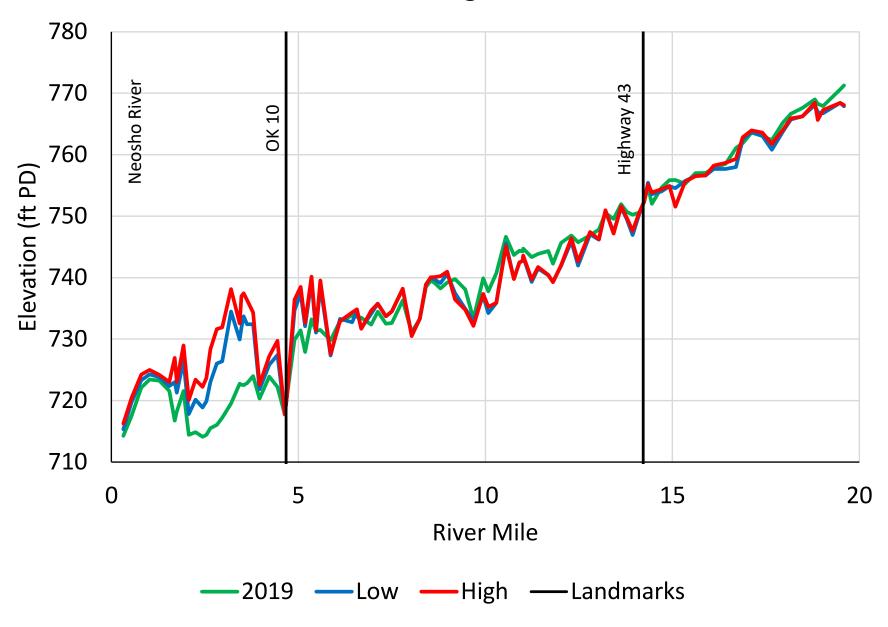
Tar Creek Average Section

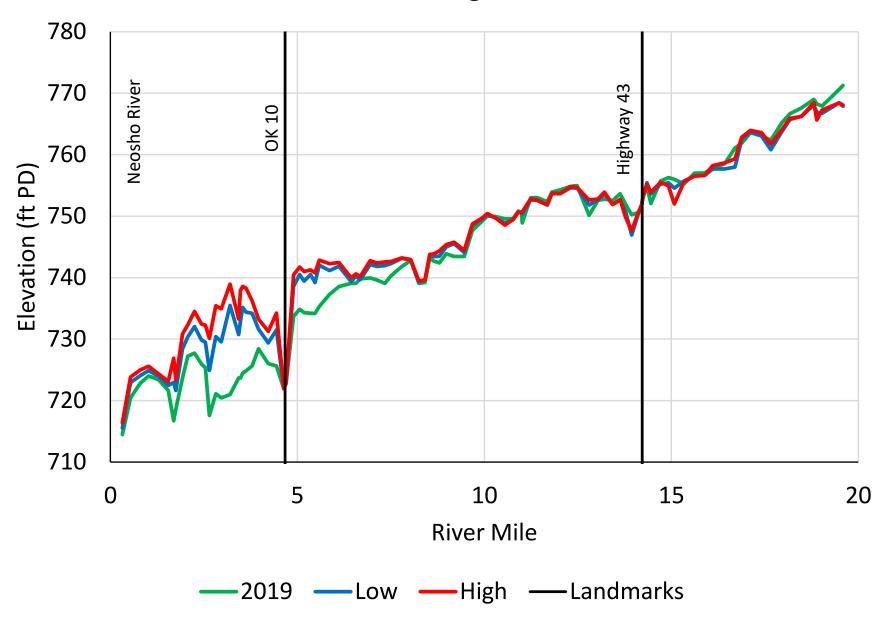


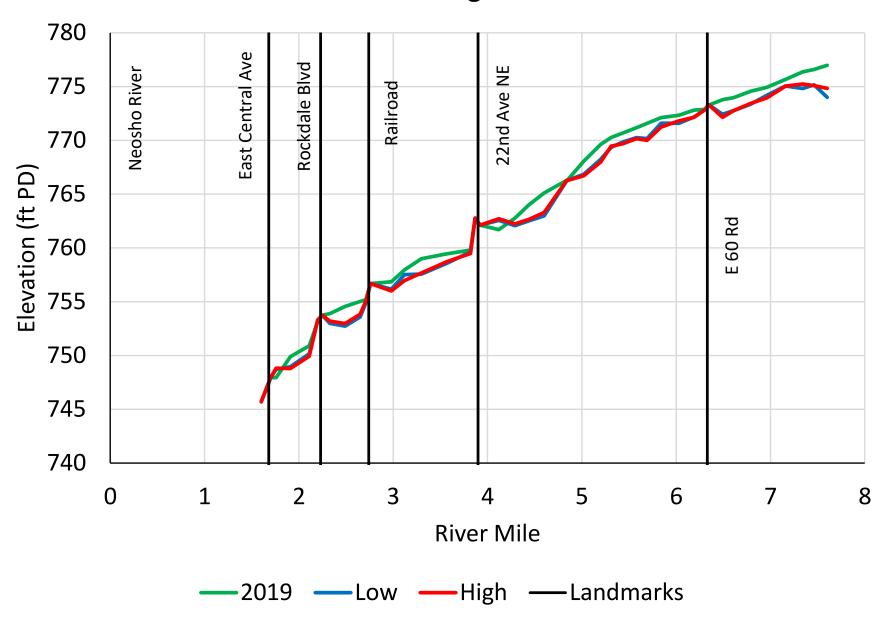
Simulated Future Average Channel and Average Section Plots – Sediment Loading Comparison

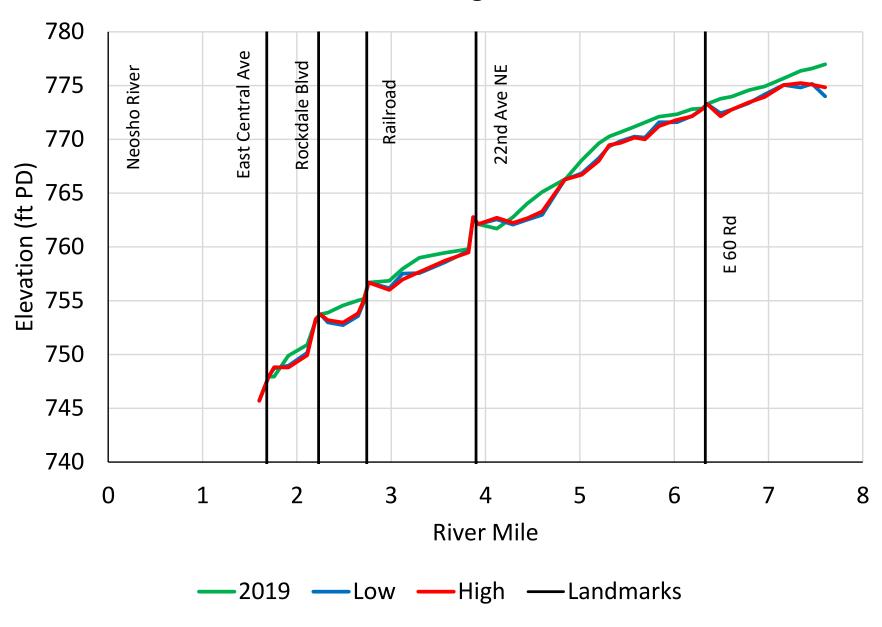

Neosho River Average Channel


Neosho River Average Section

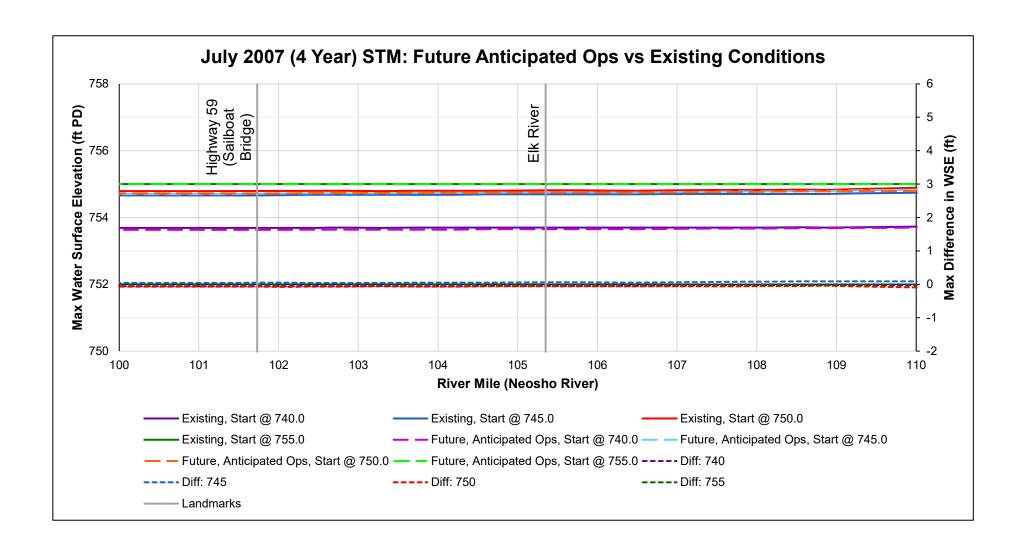

Spring River Average Channel

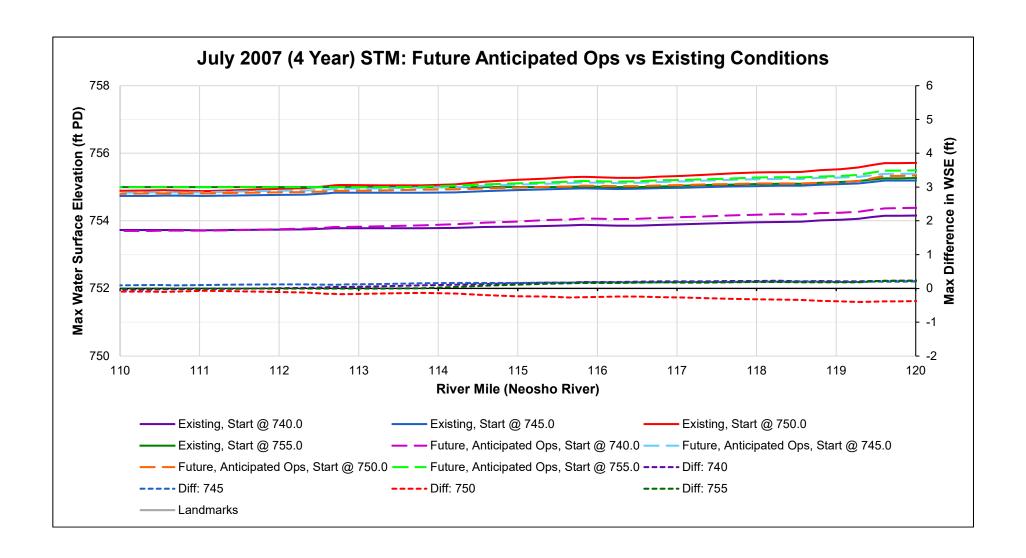

Spring River Average Section

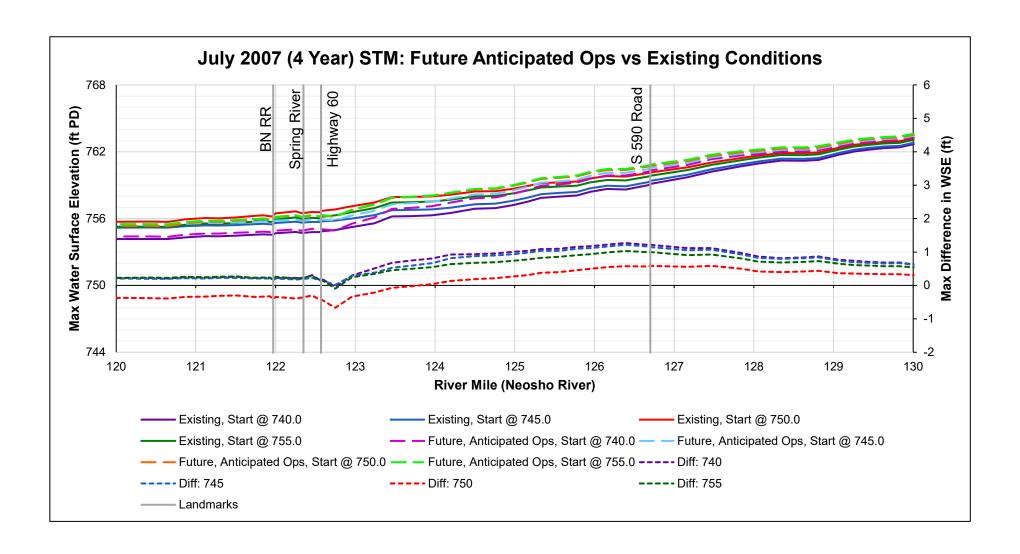

Elk River Average Channel

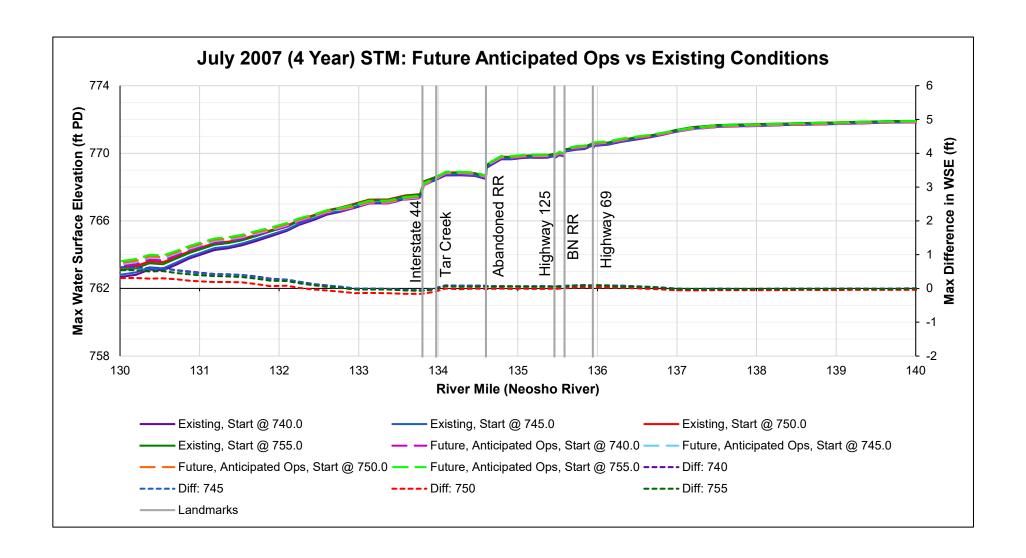

Elk River Average Section

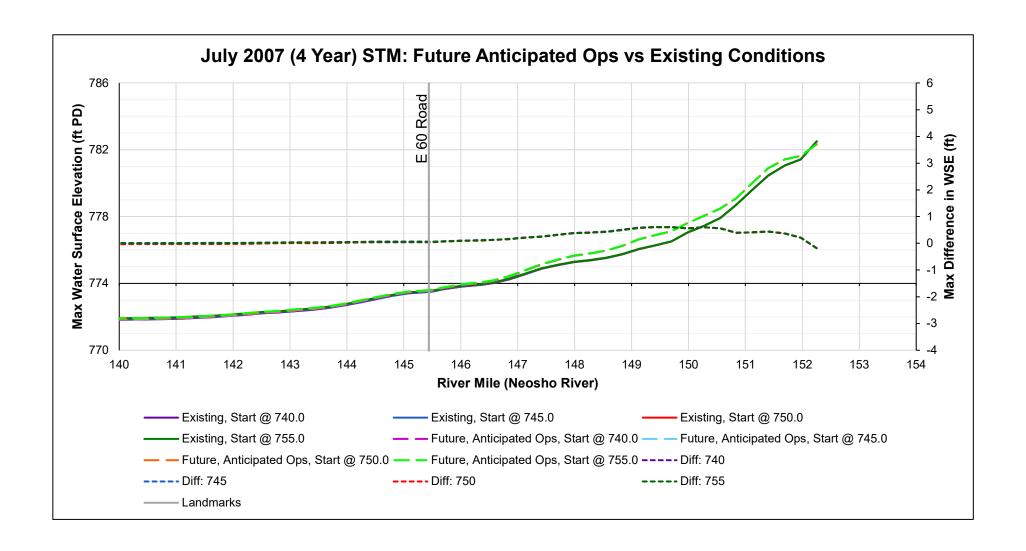
Tar Creek Average Channel

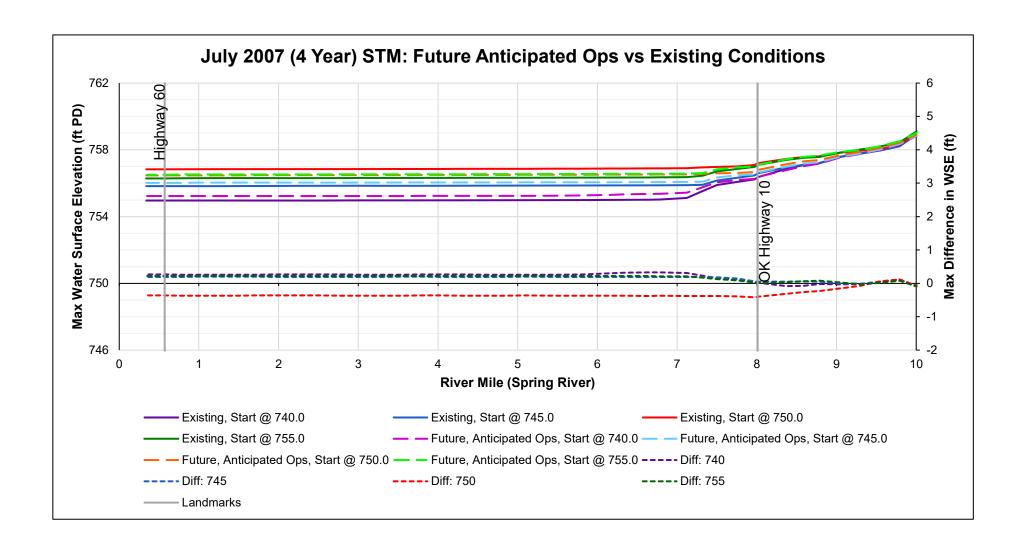

Tar Creek Average Section

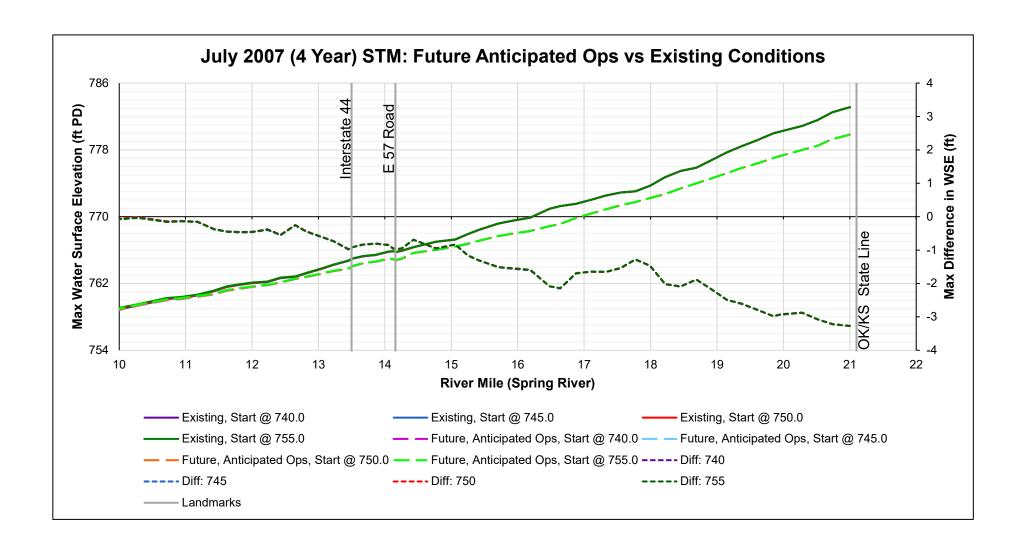


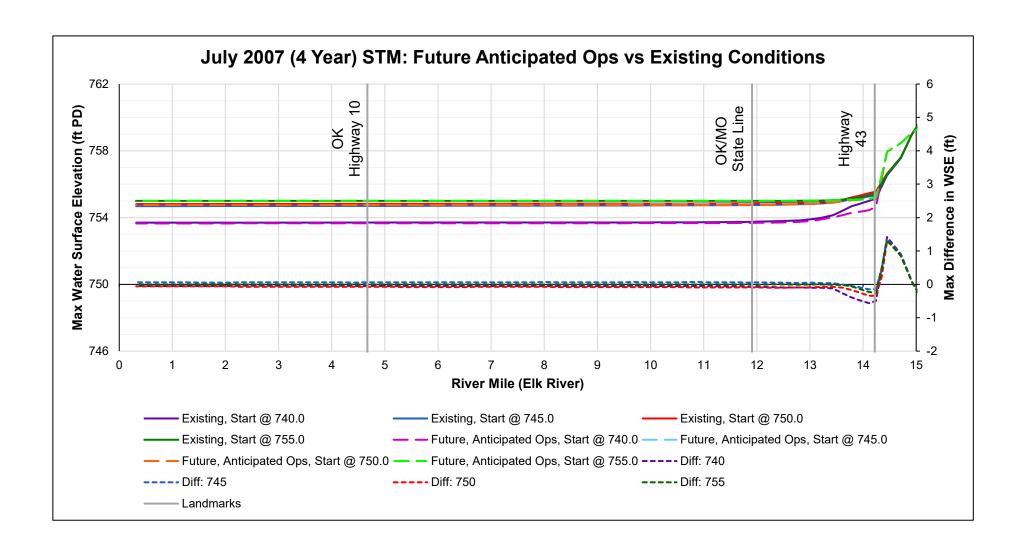

Please see following spreadsheets for cross section analyses:

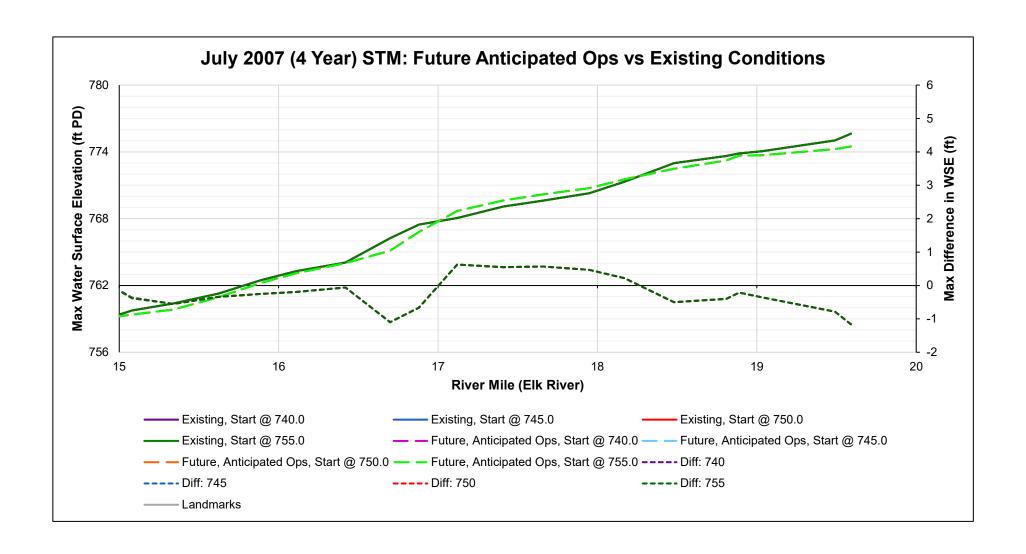

- ElkRiver-XS_Analysis
- NeoshoRiver-XS_Analysis-01
- NeoshoRiver-XS_Analysis-02
- NeoshoRiver-XS_Analysis-03
- SpringRiver-XS_Analysis

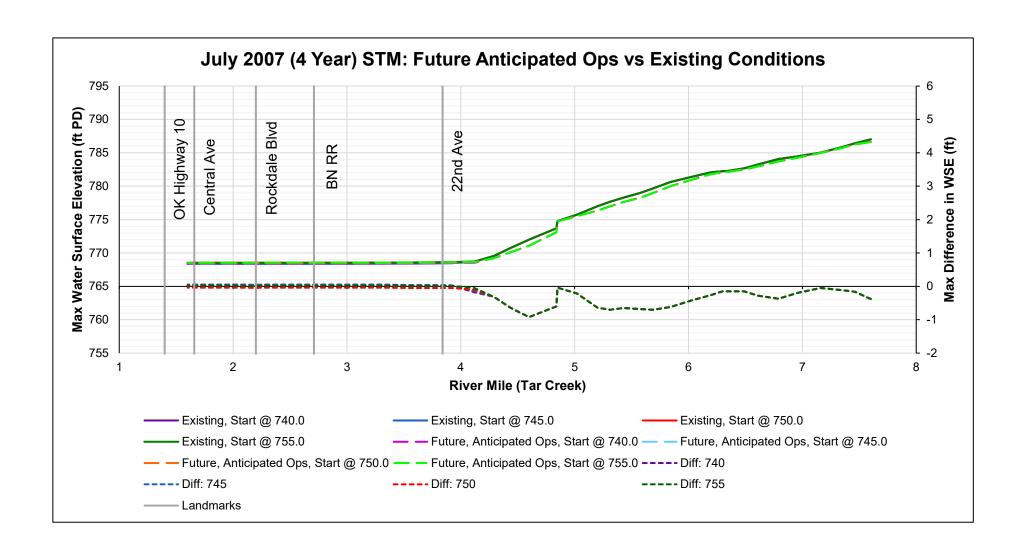

Exhibit 7 1D UHM Results

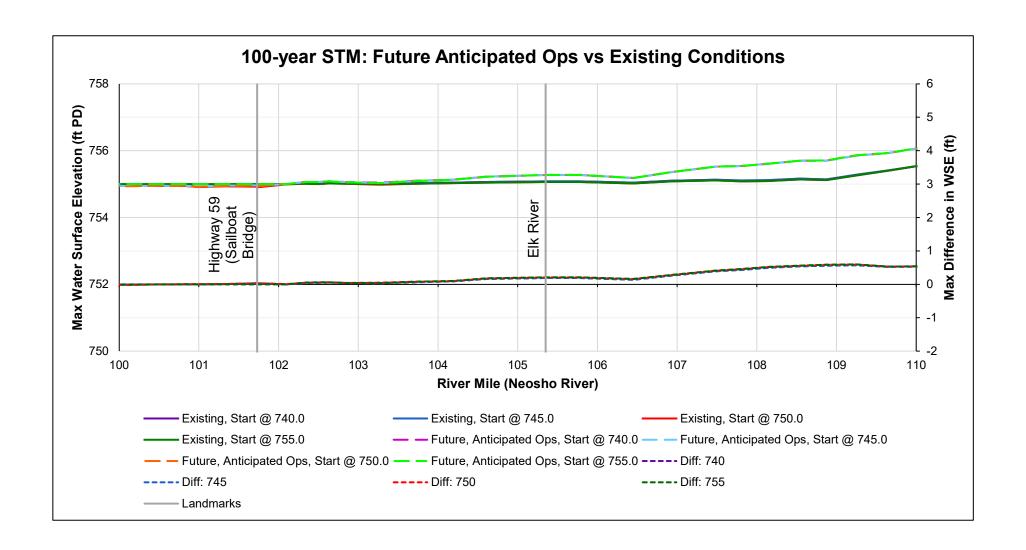


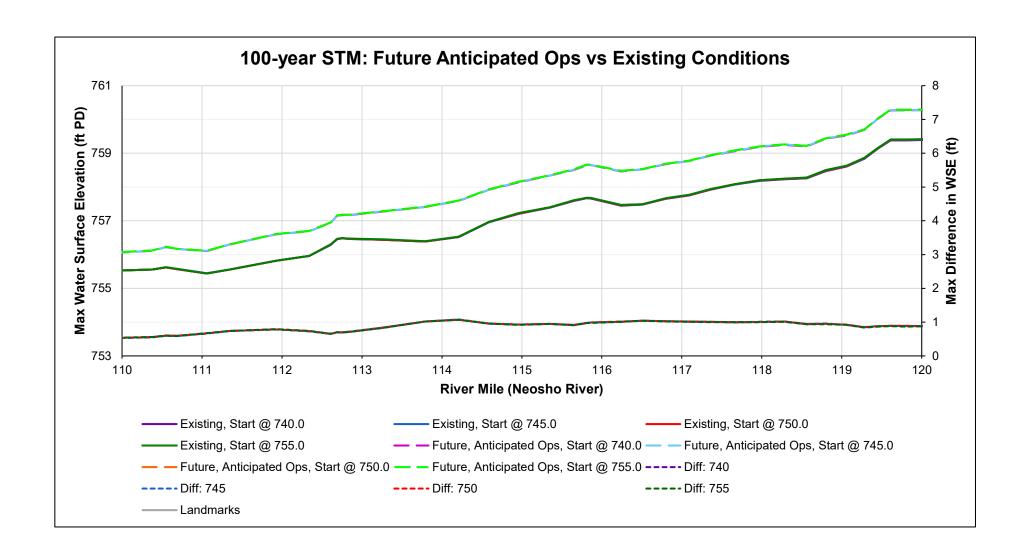


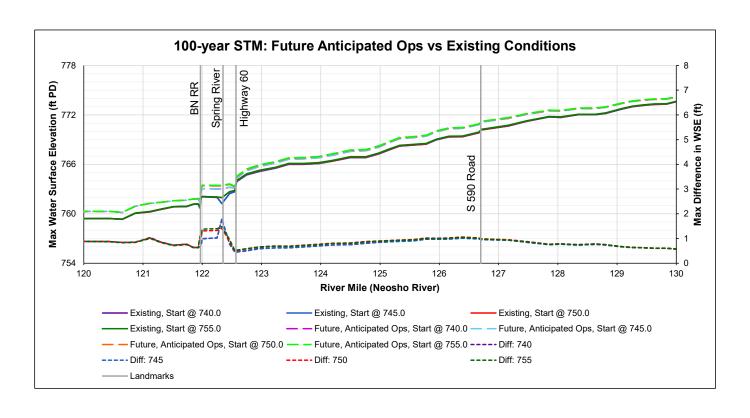


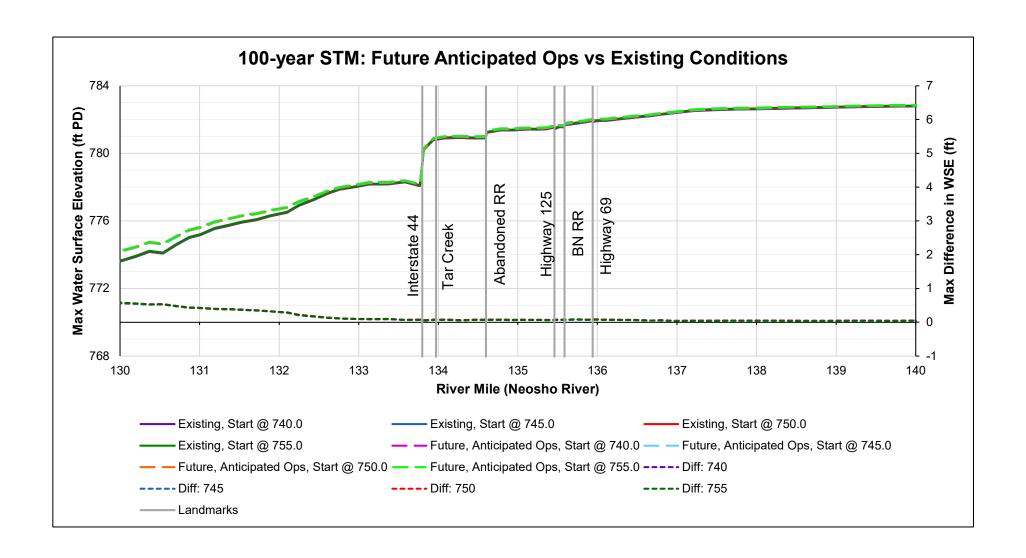


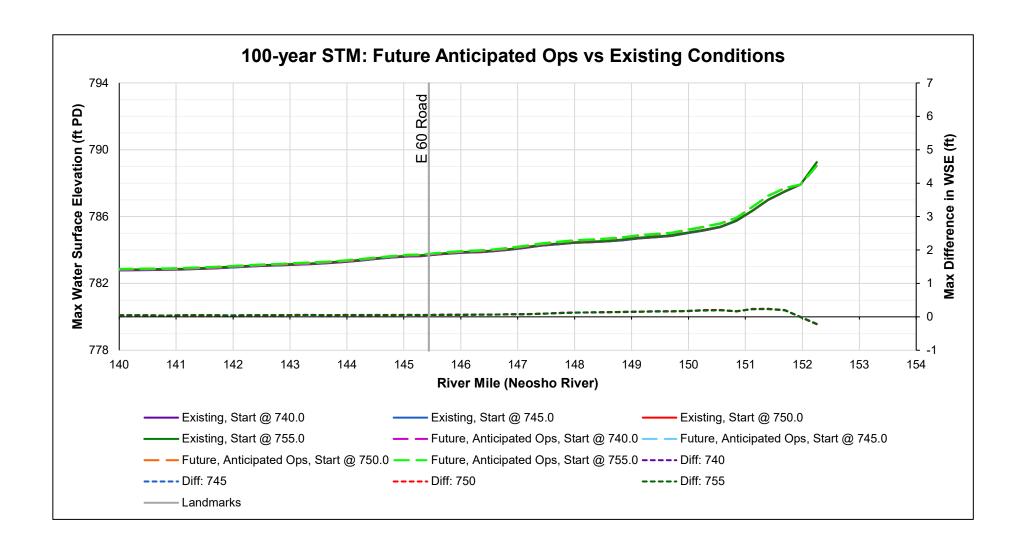


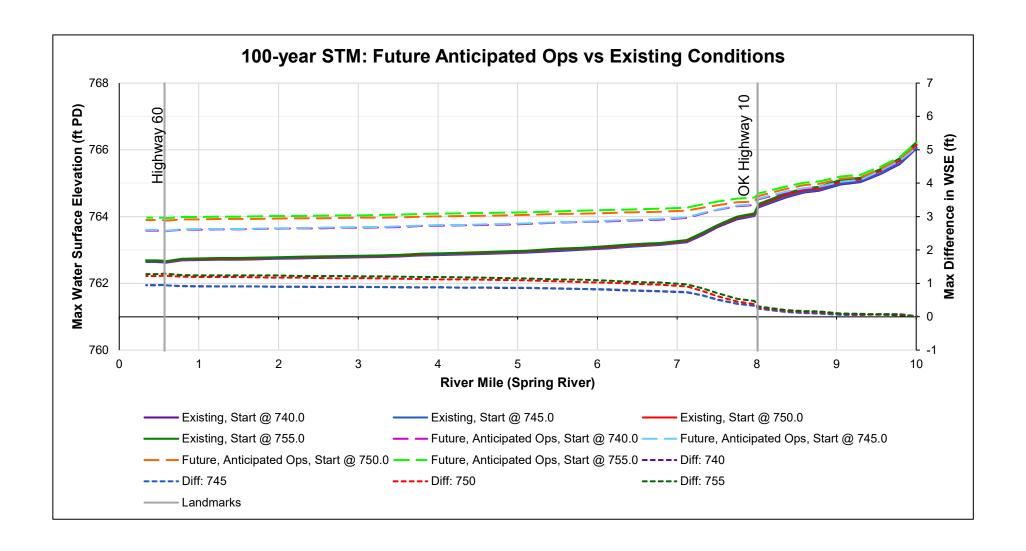


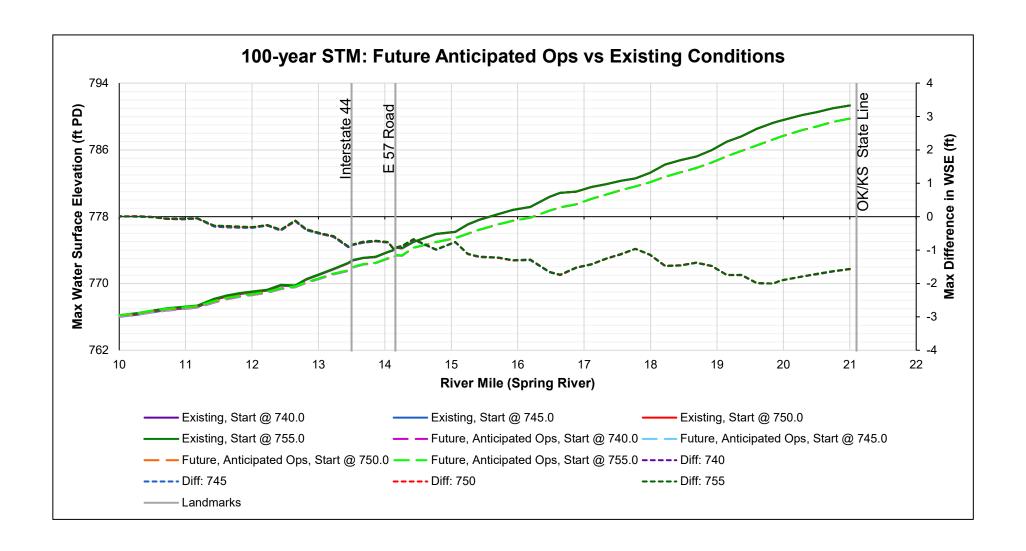


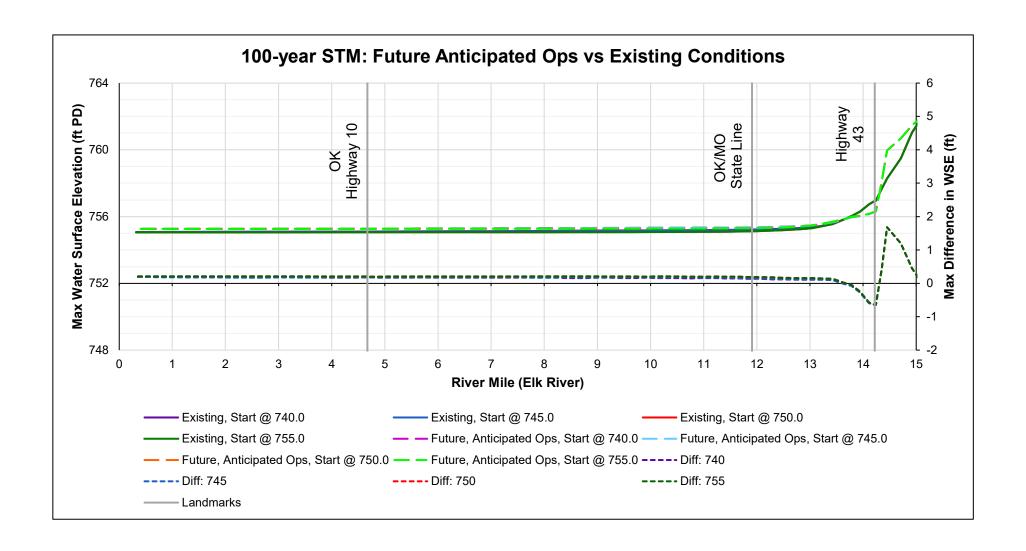


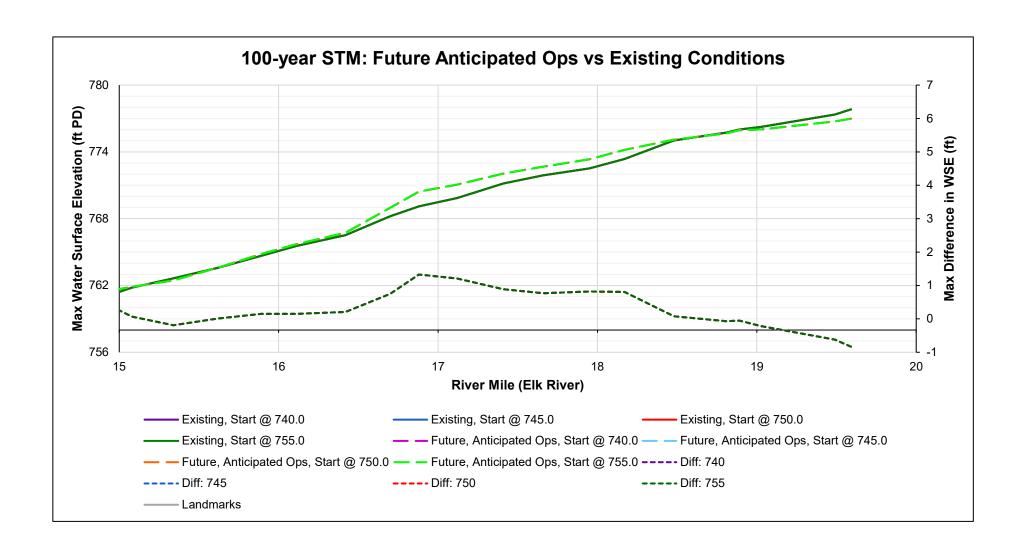


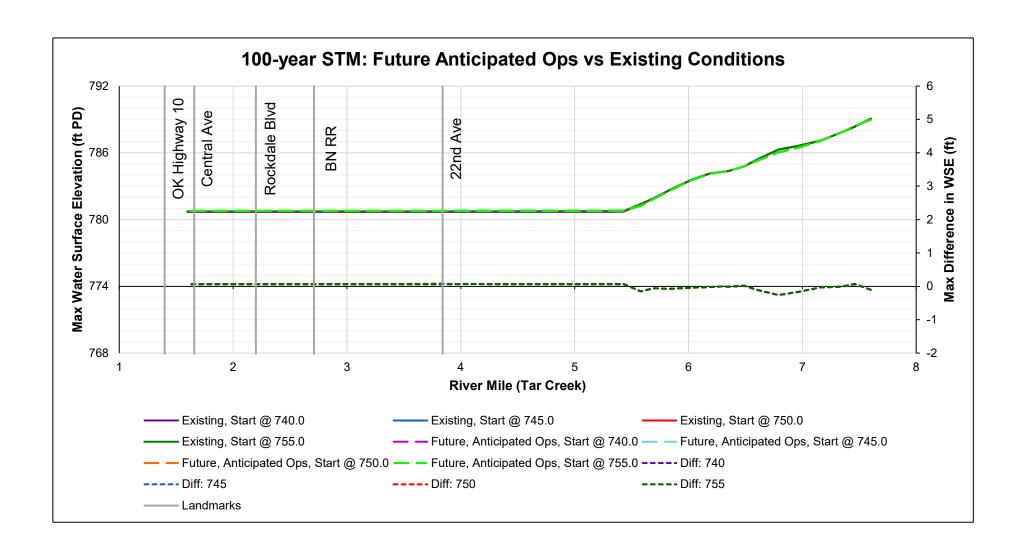


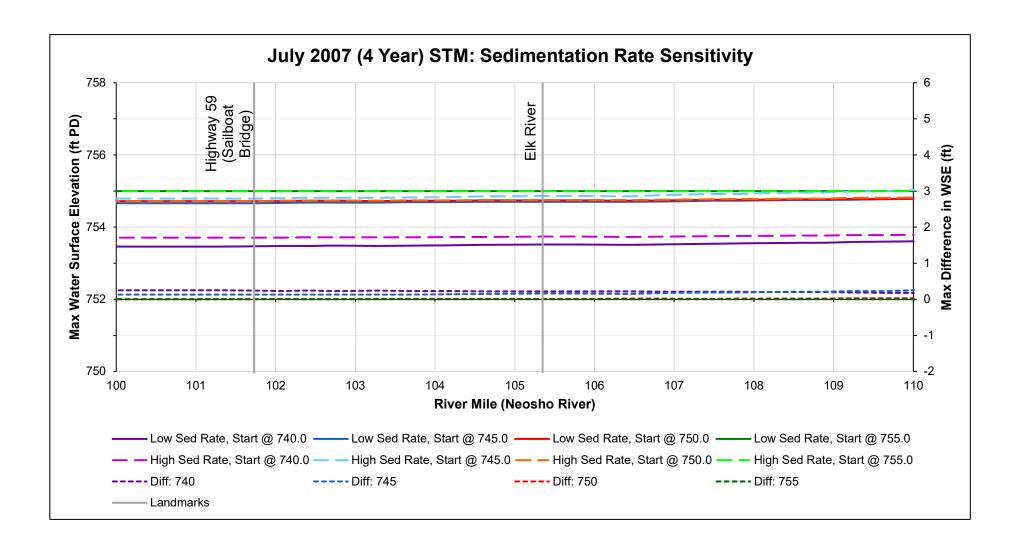


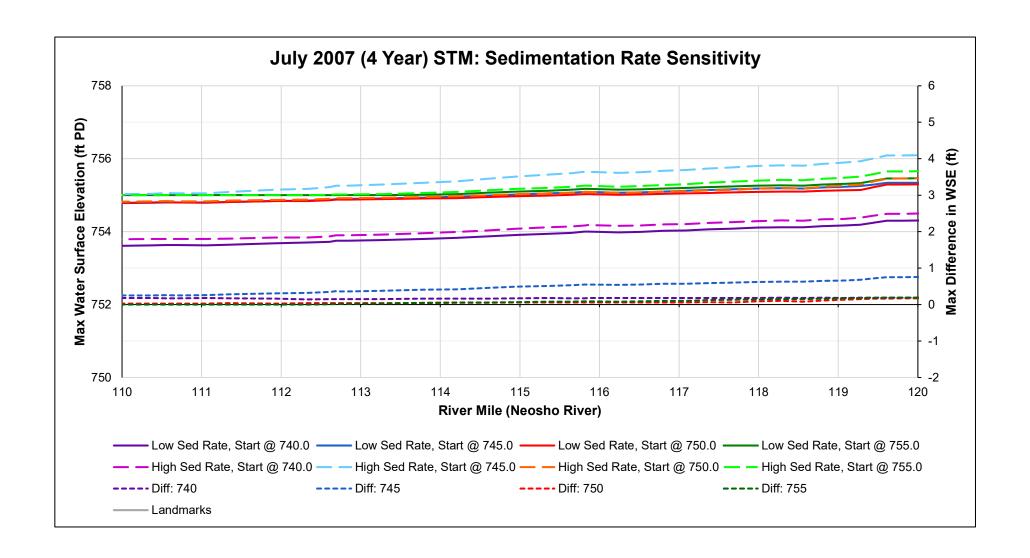


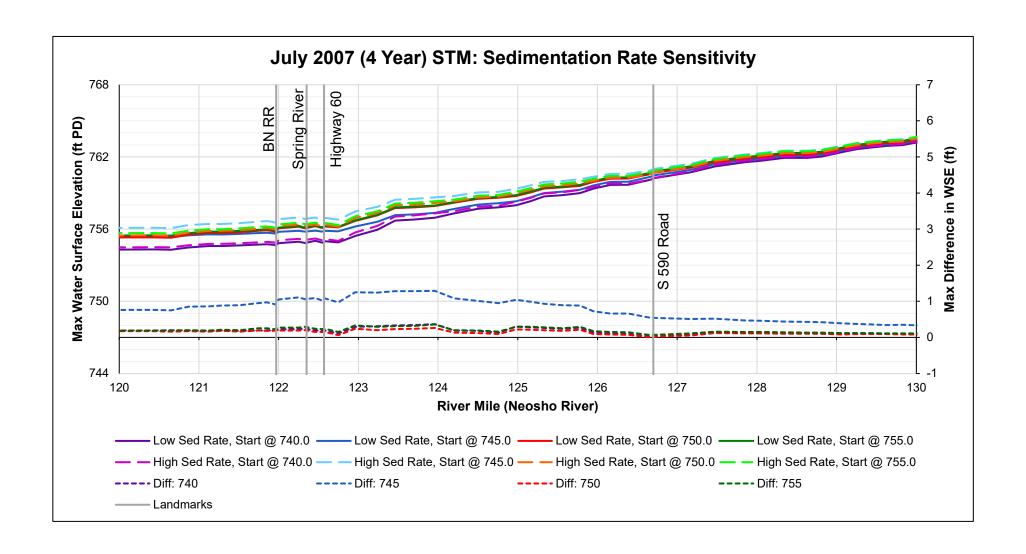


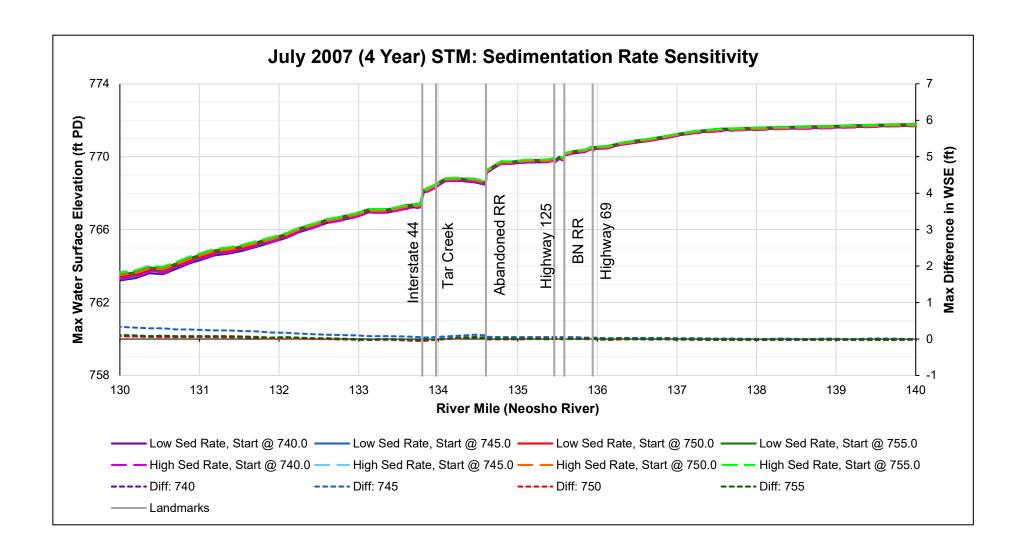


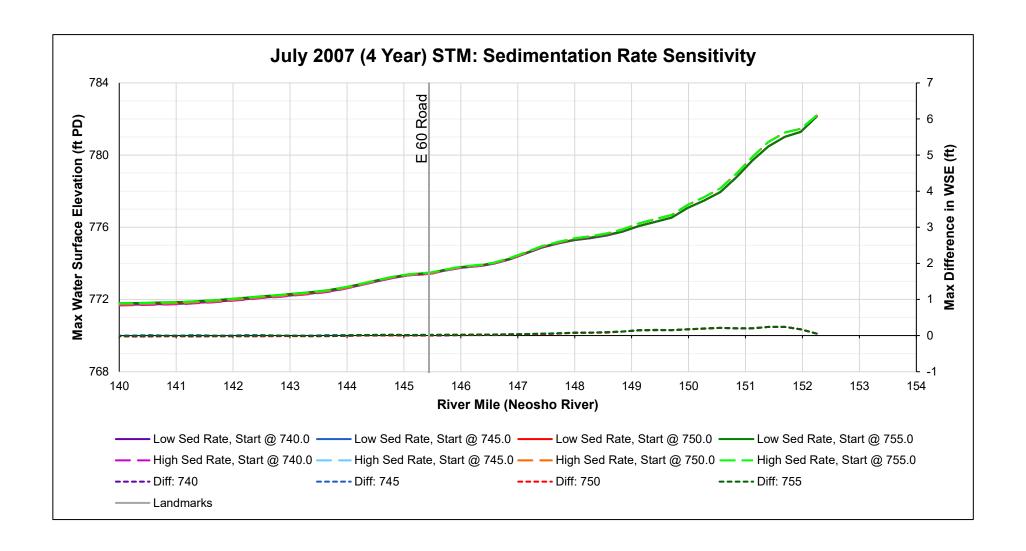


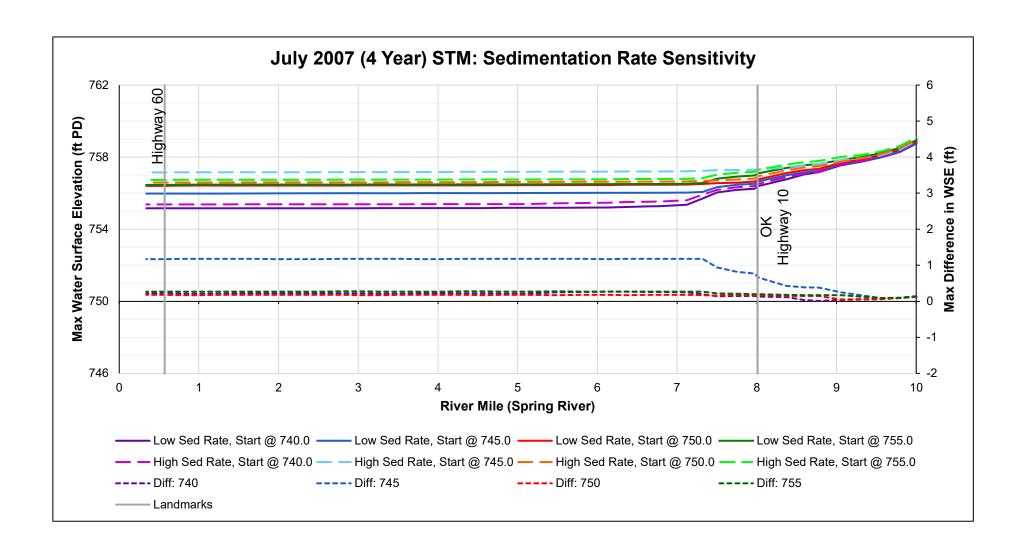


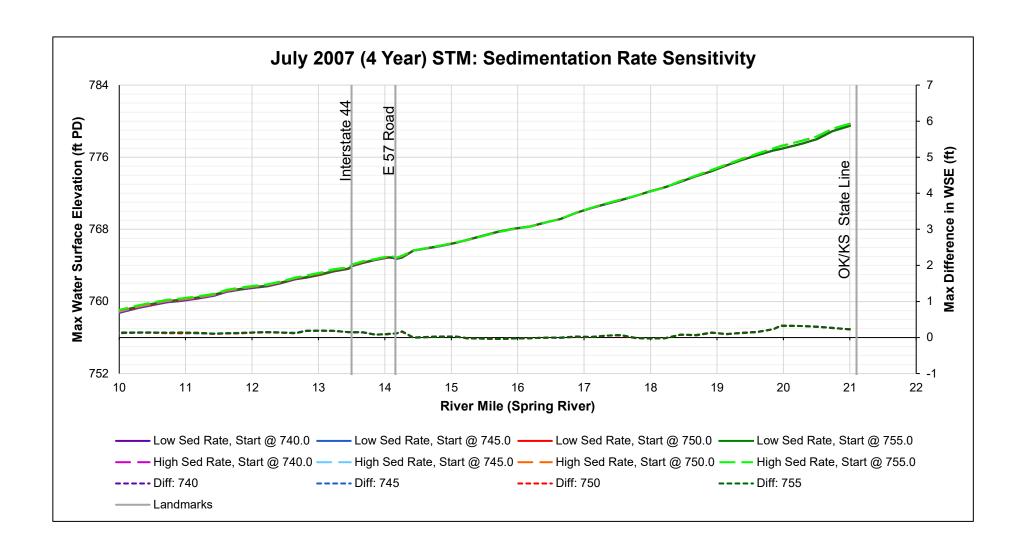


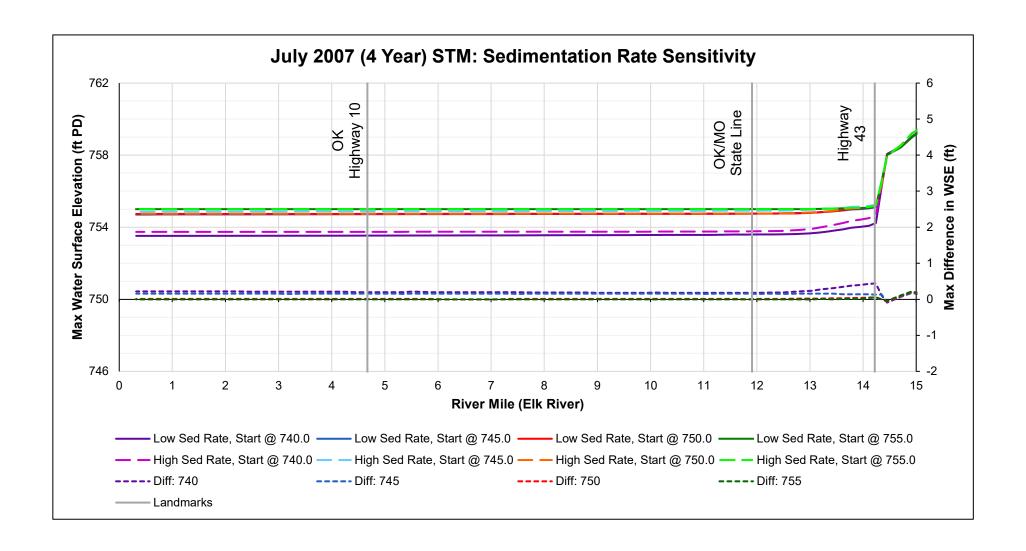


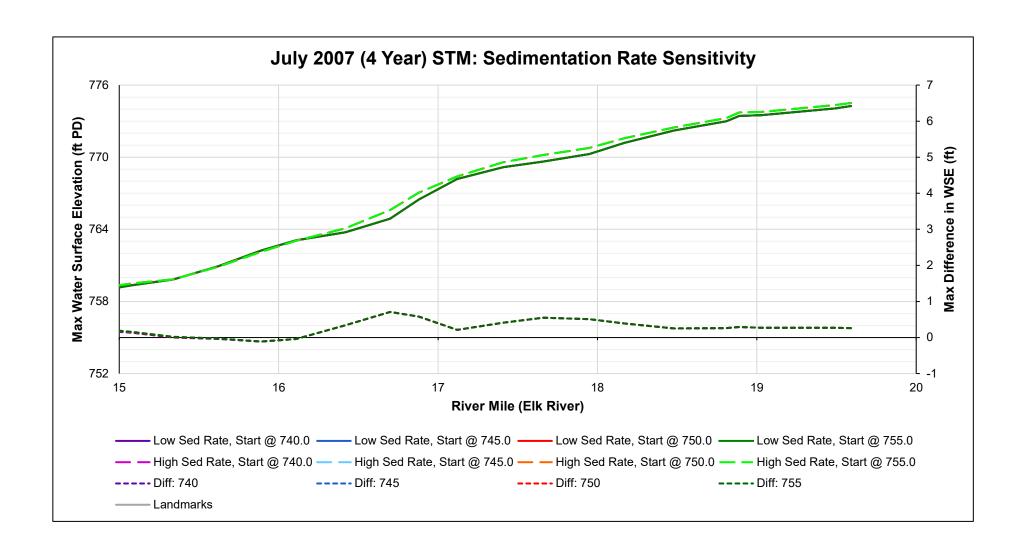


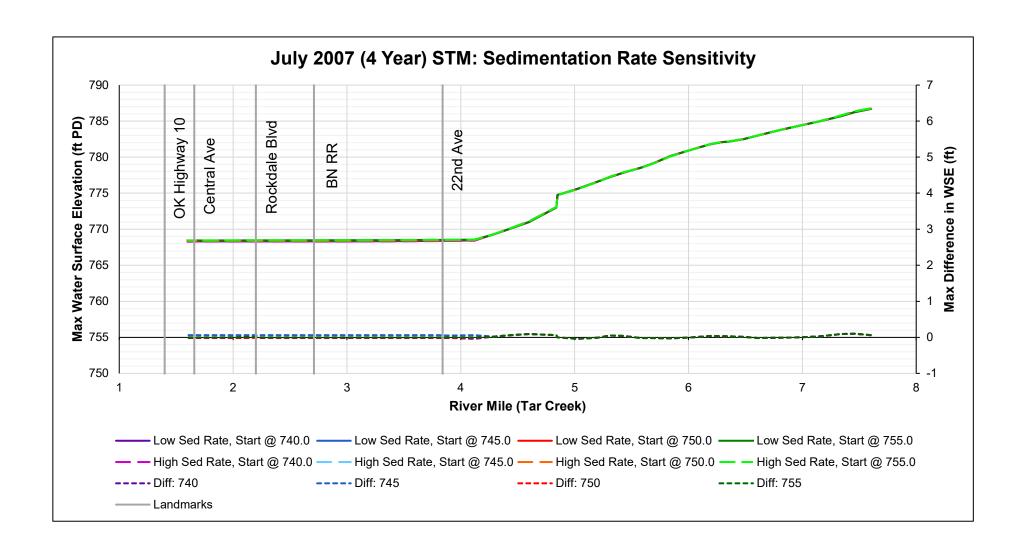


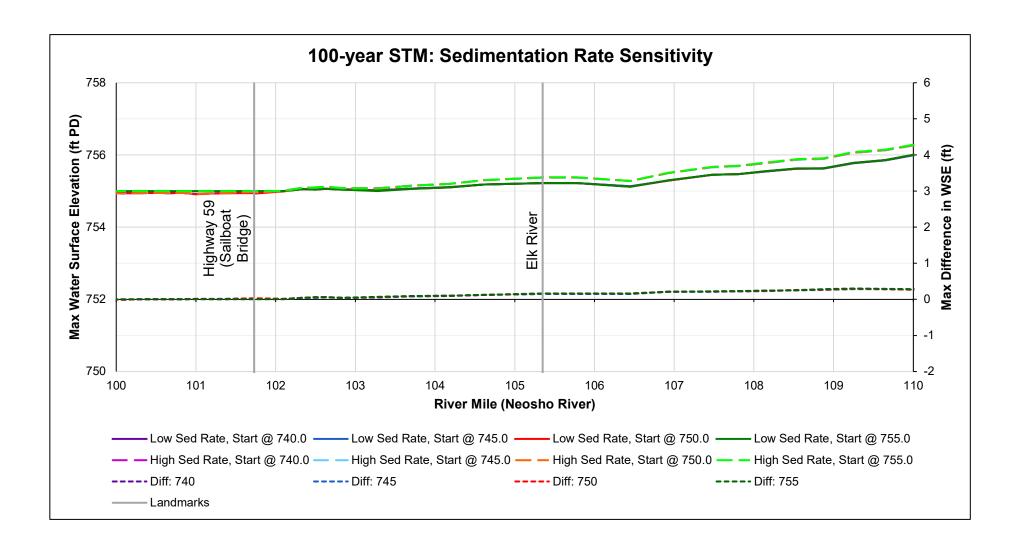


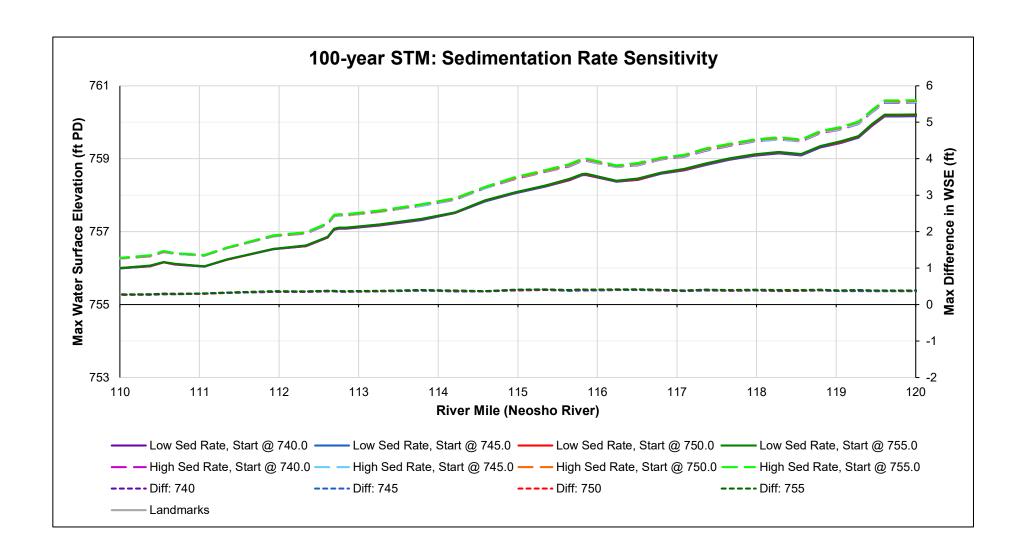


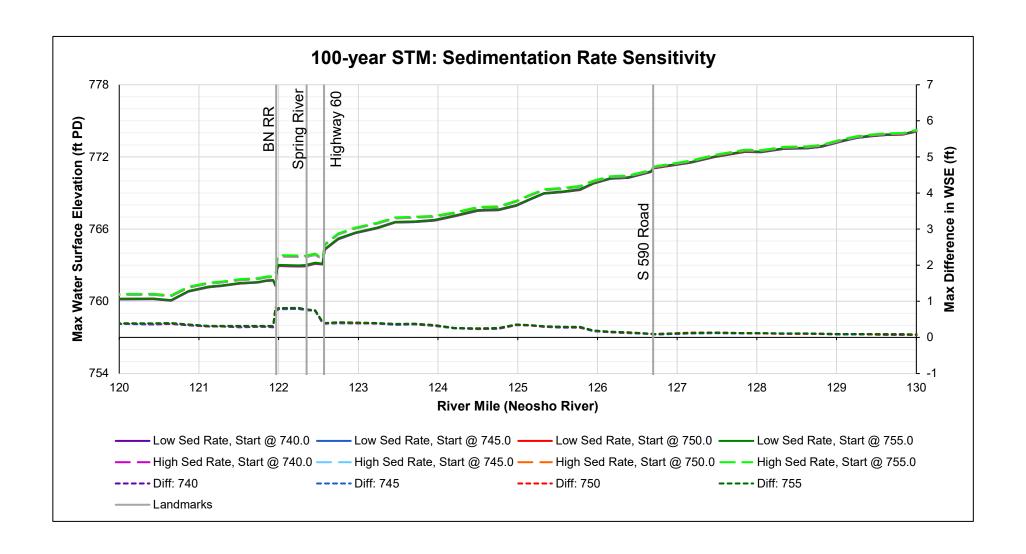


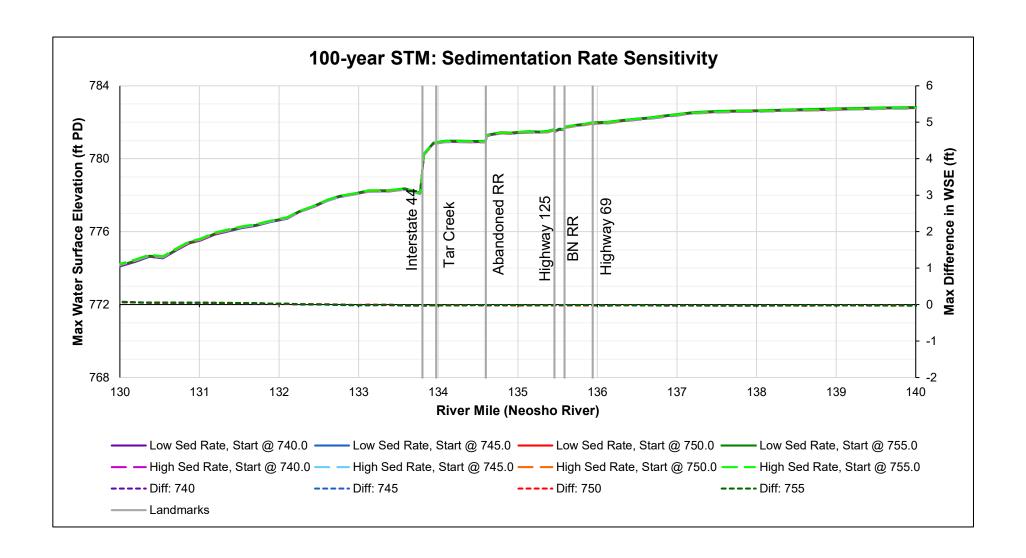


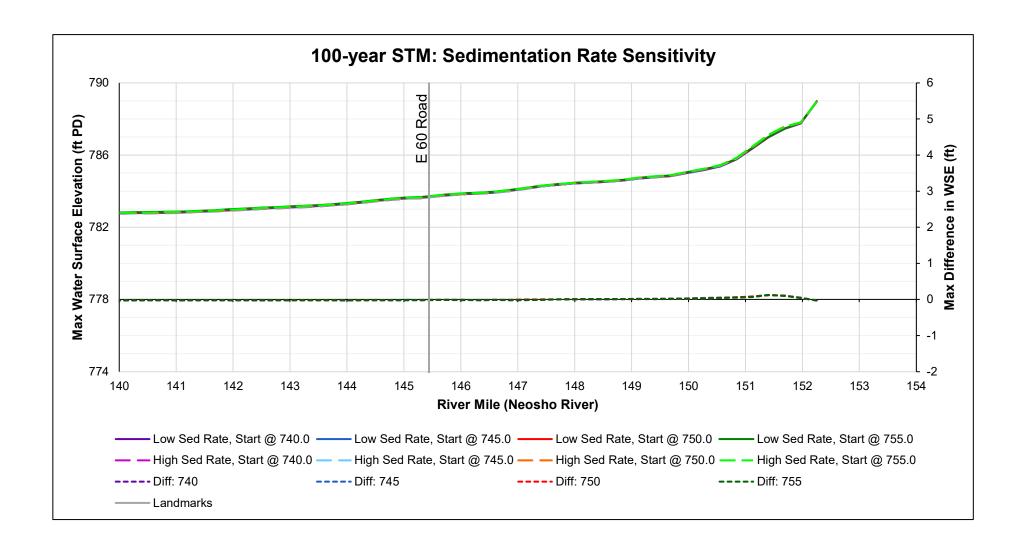


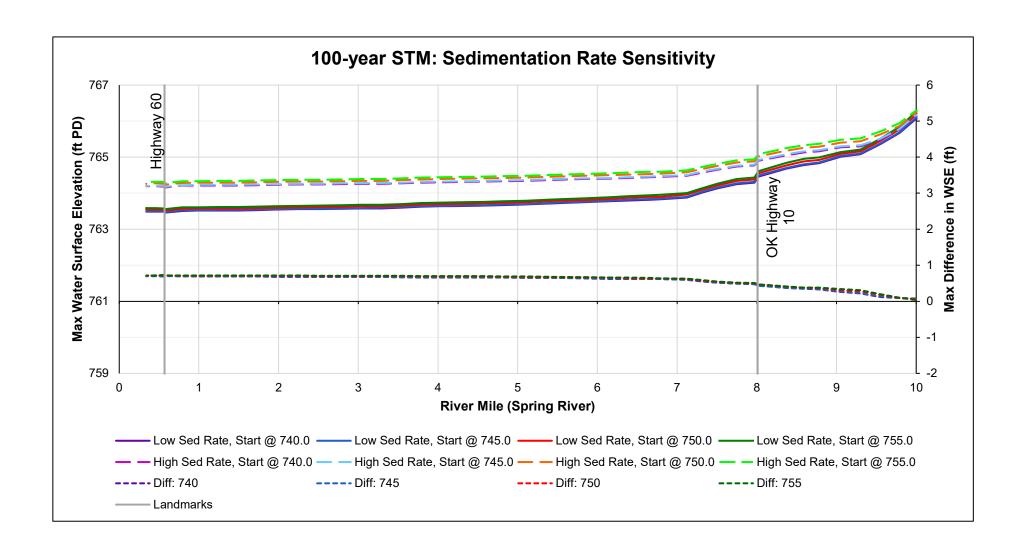


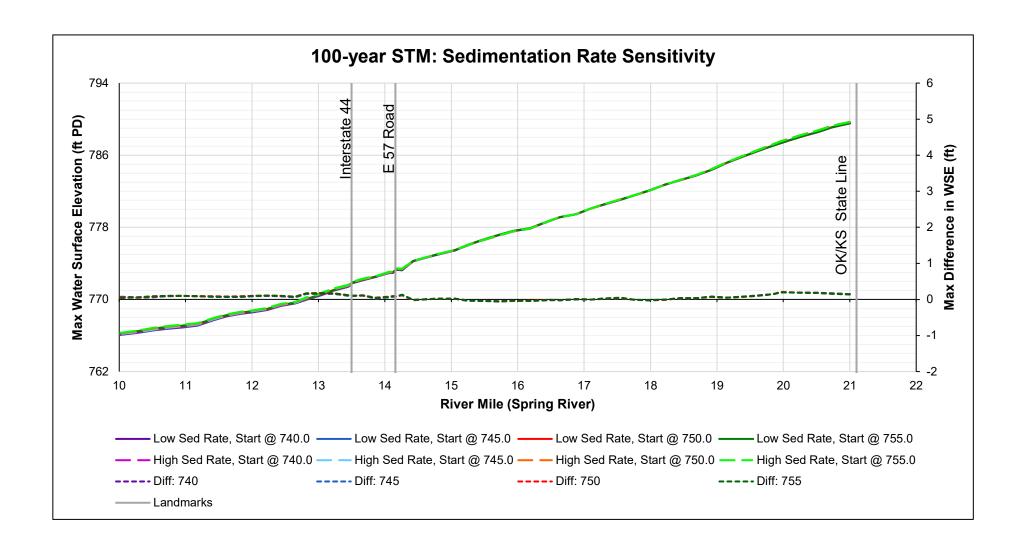


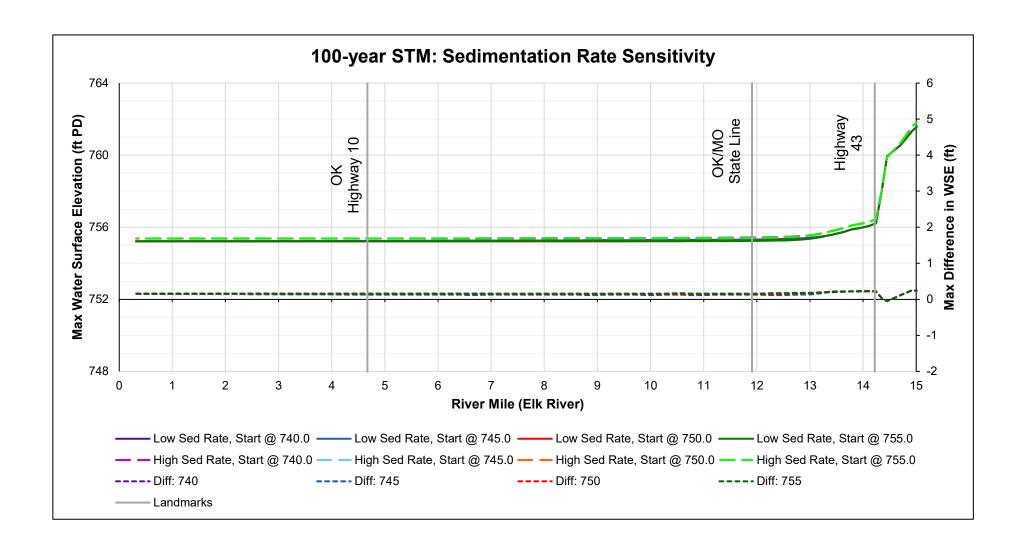


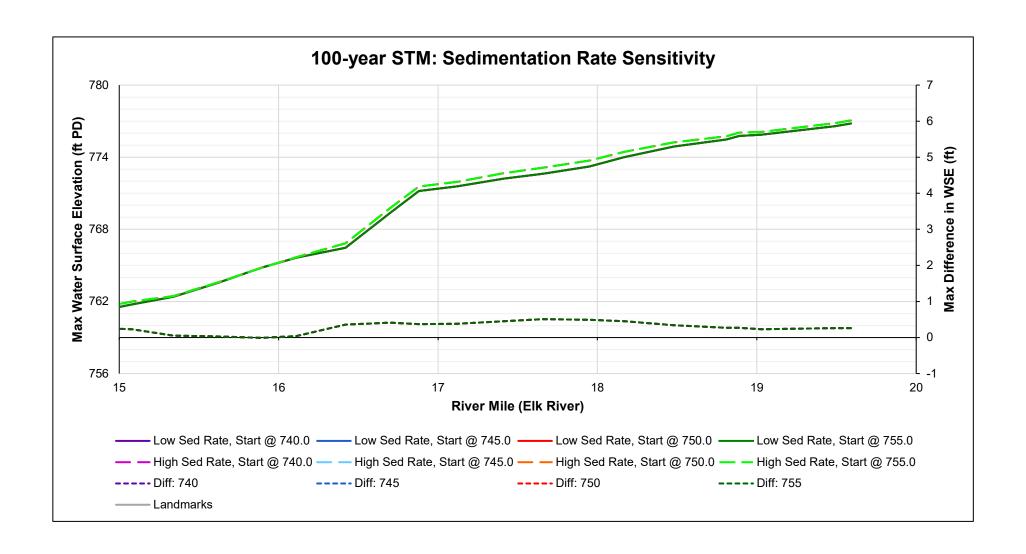


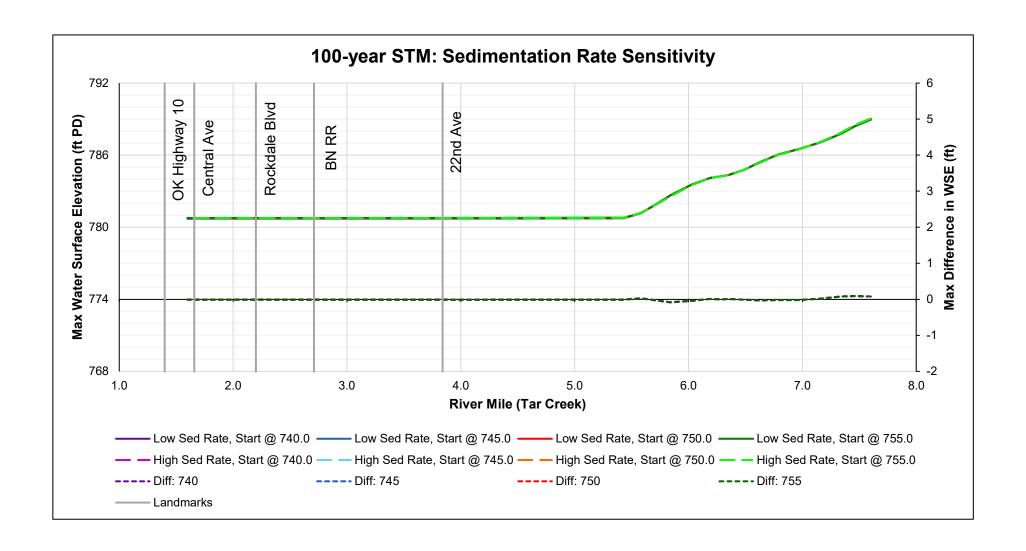


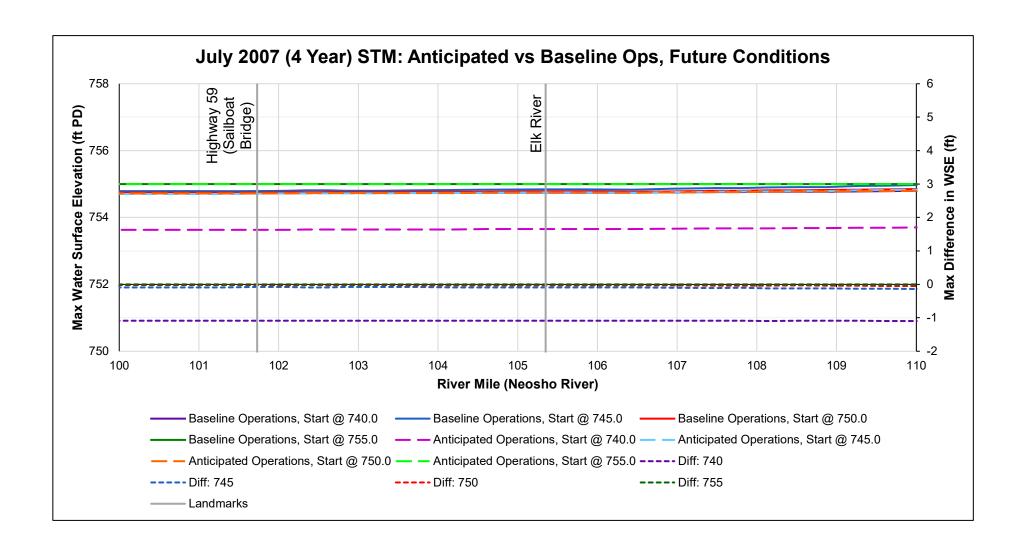


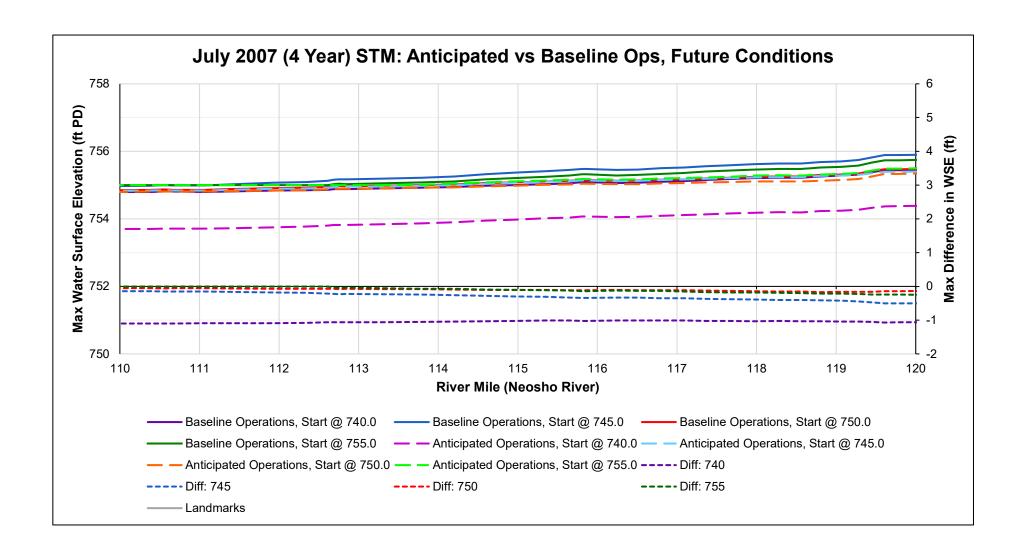


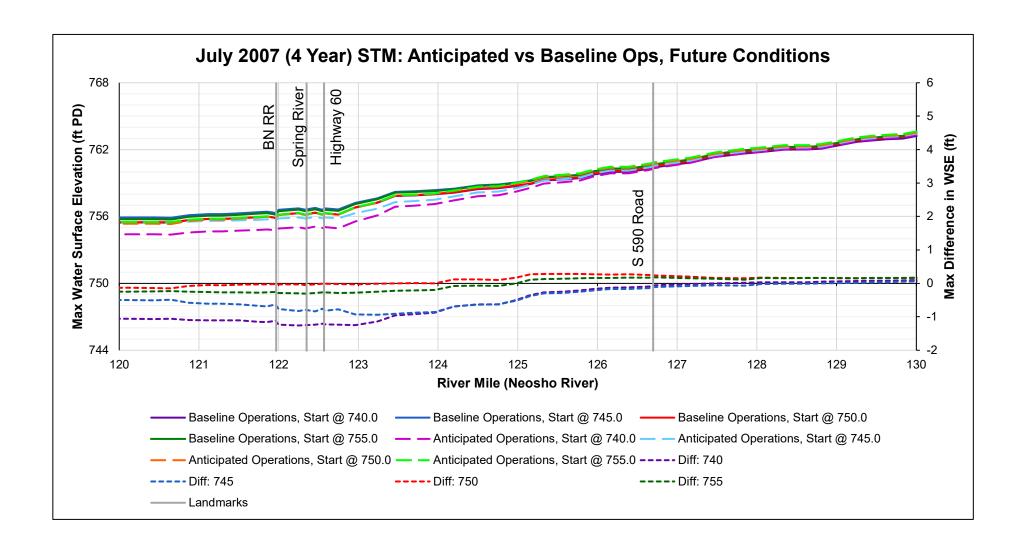


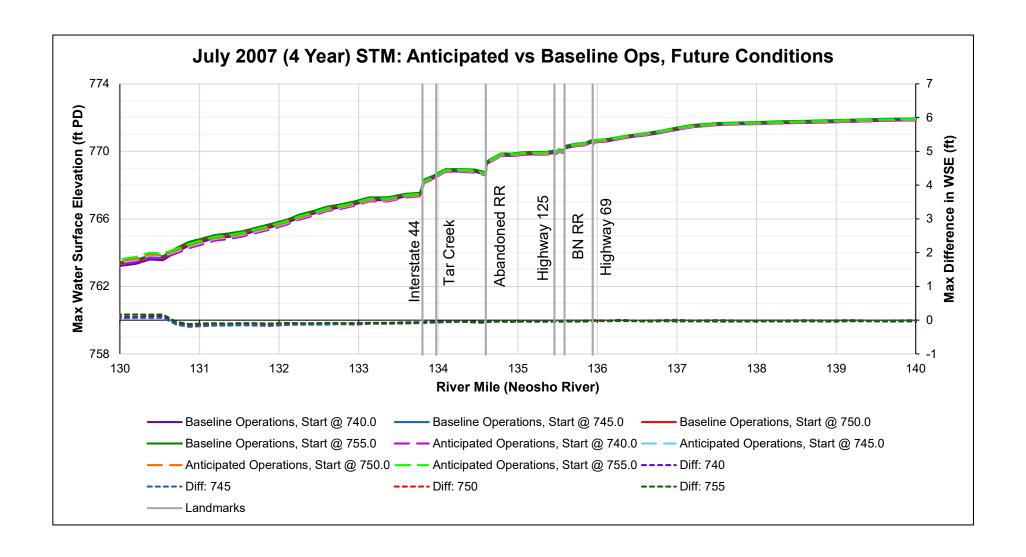


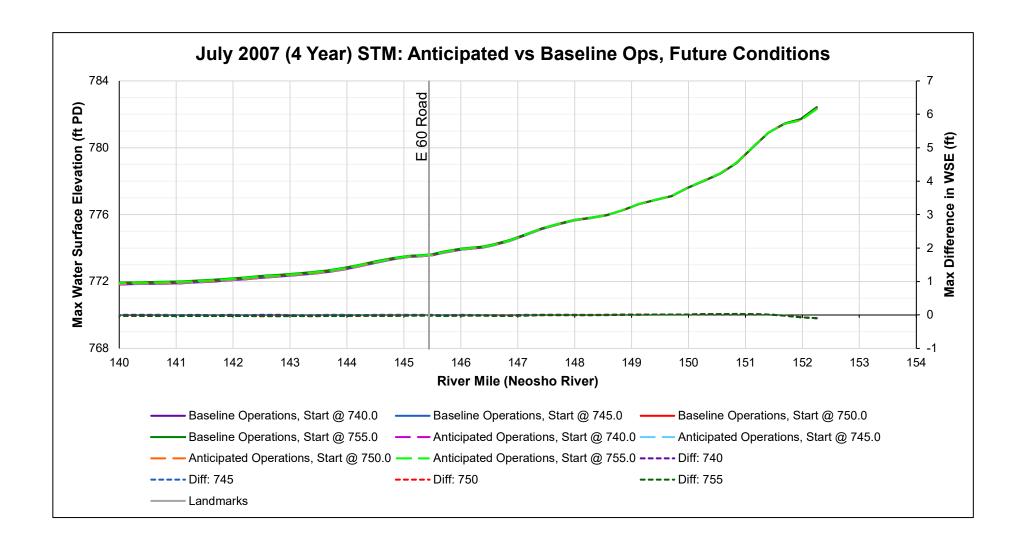


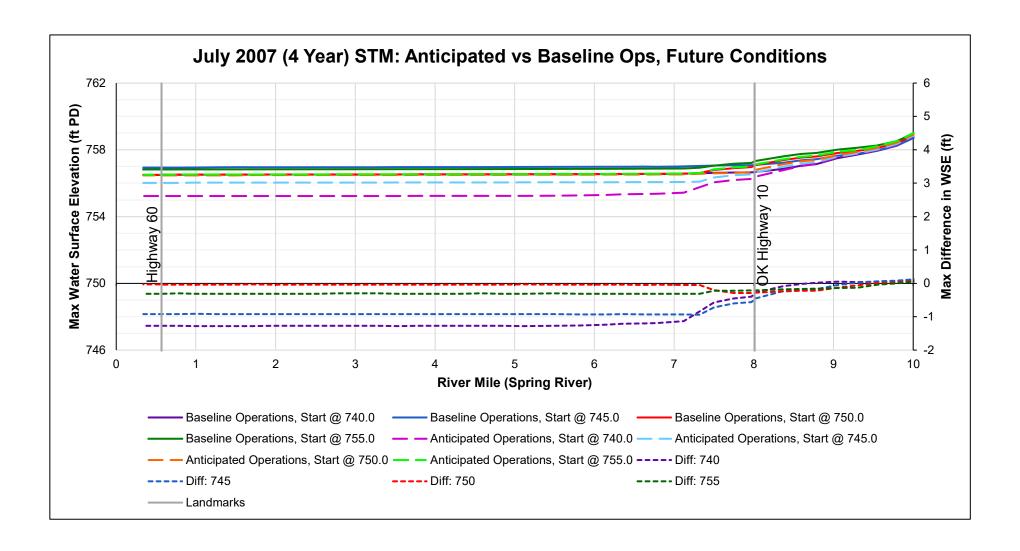


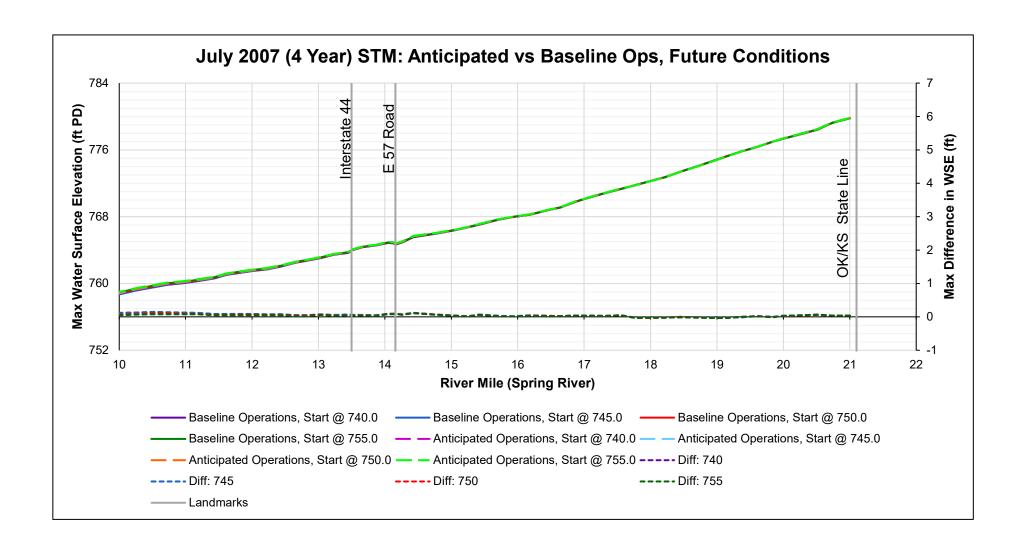


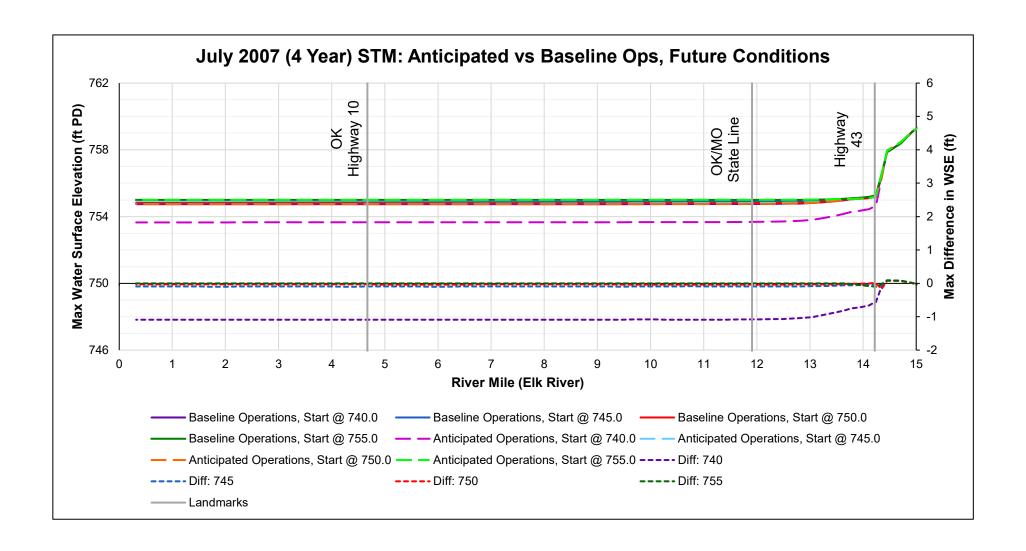


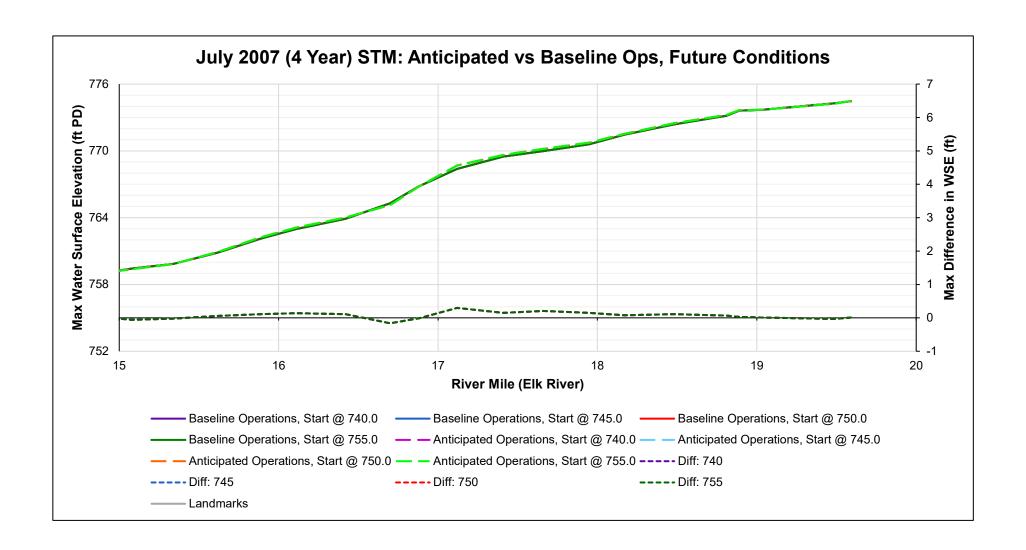


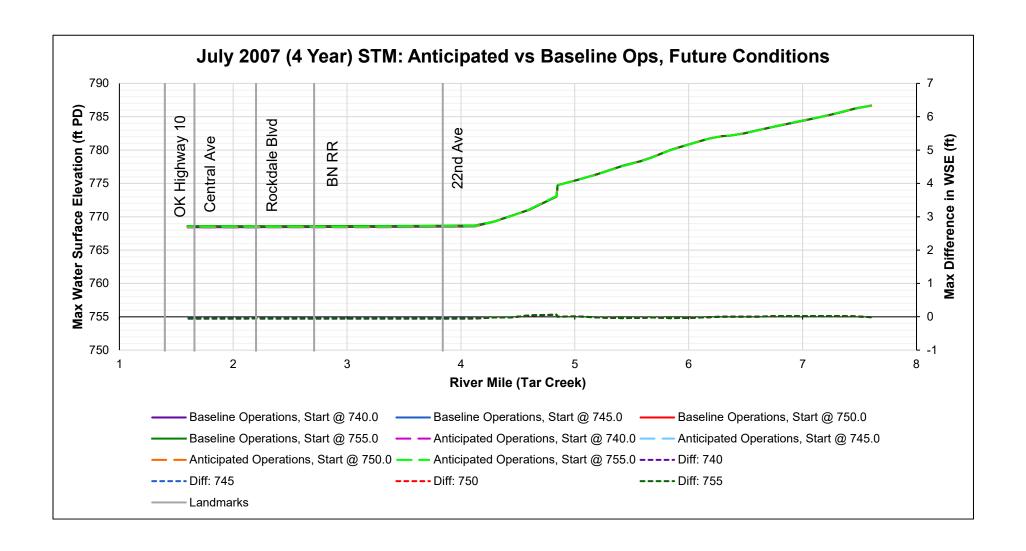


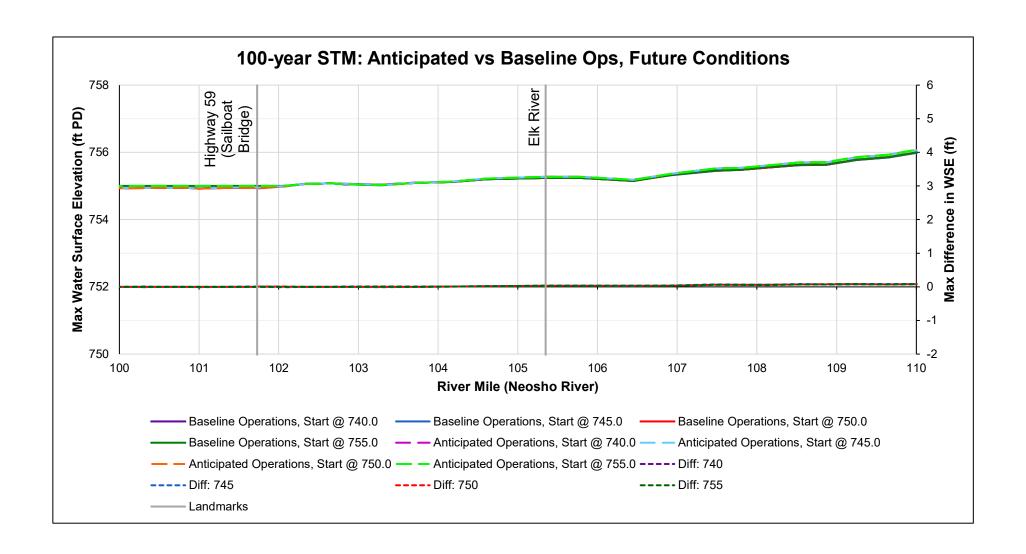


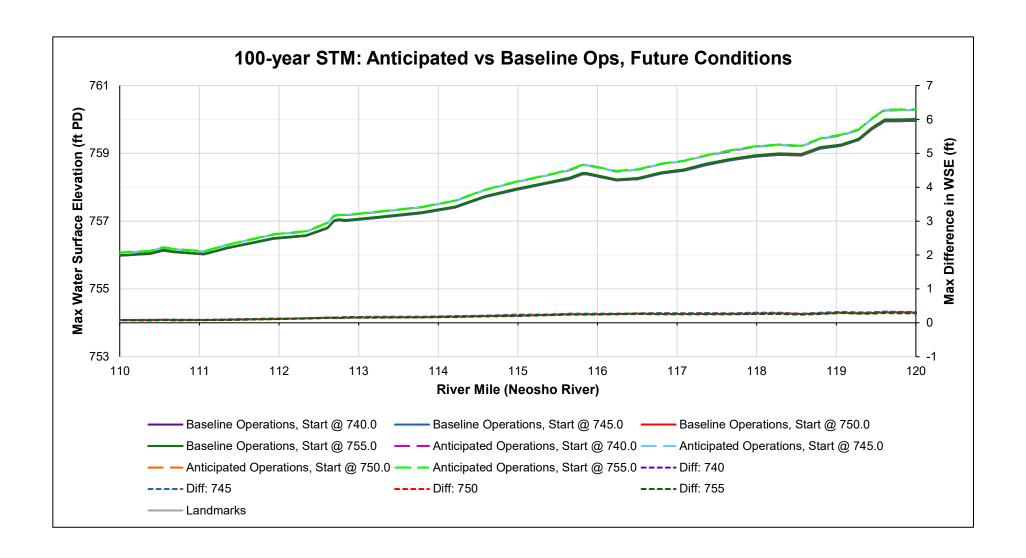


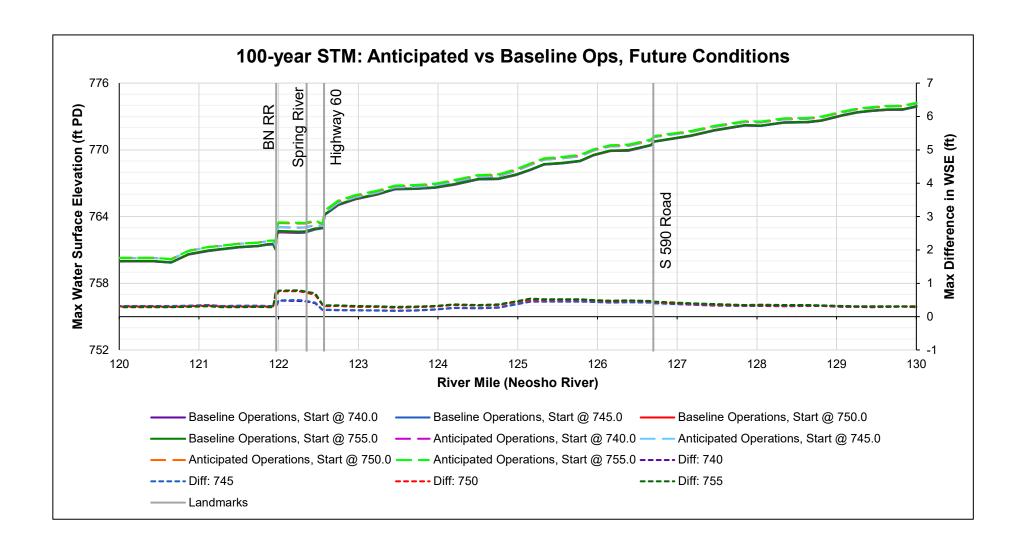


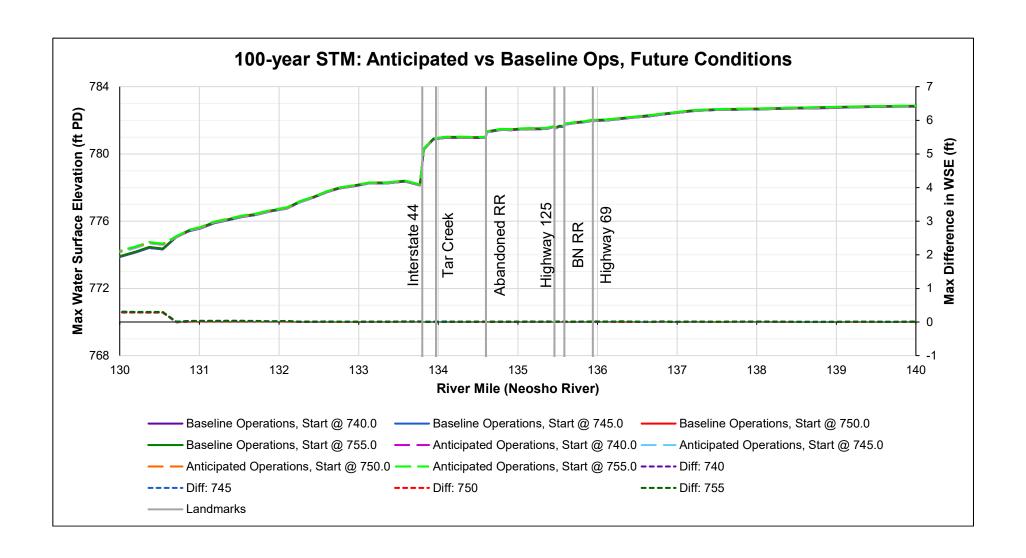


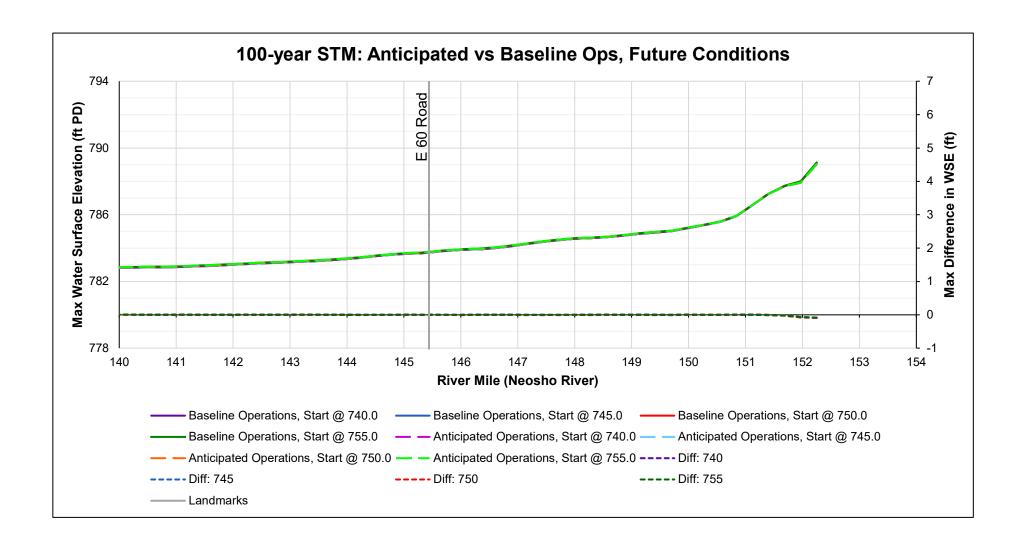


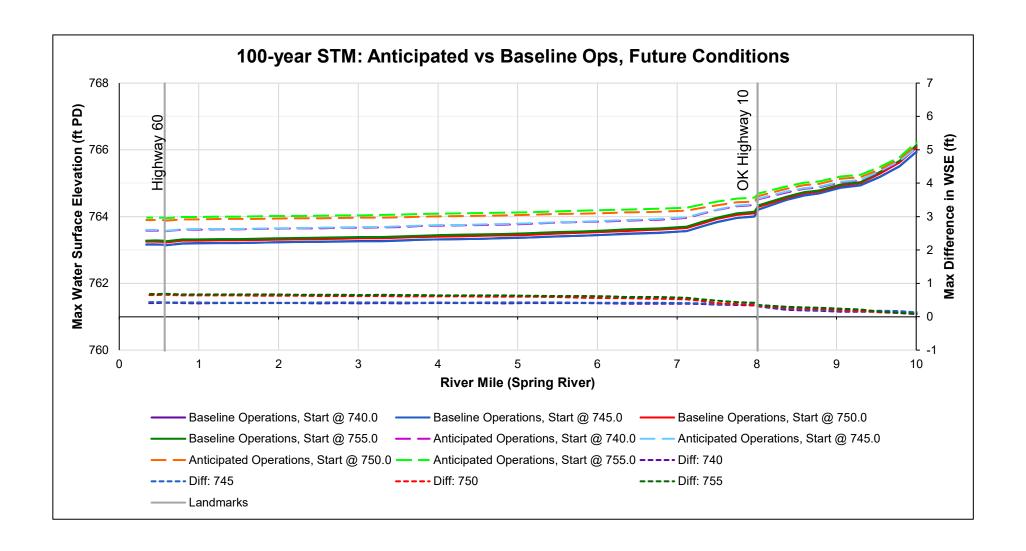


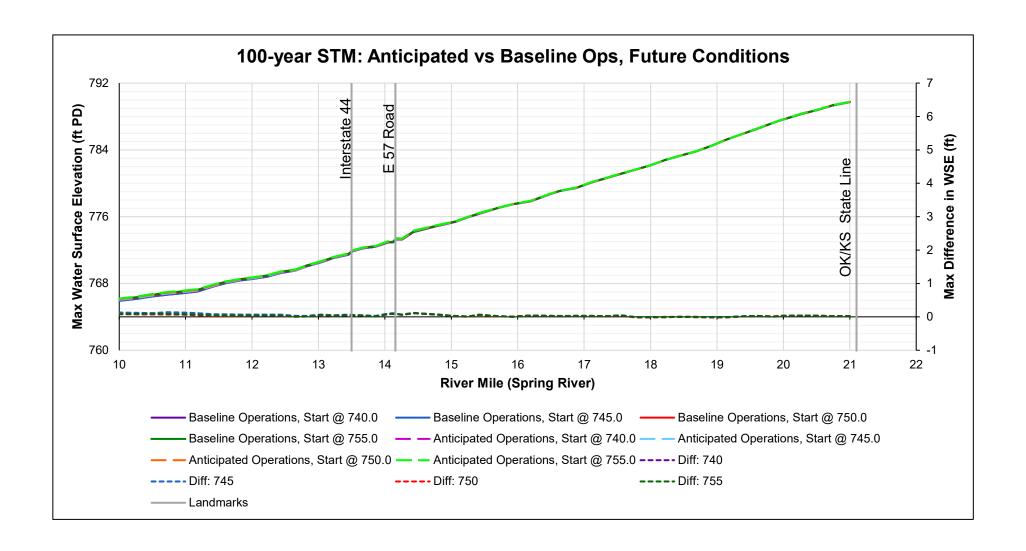


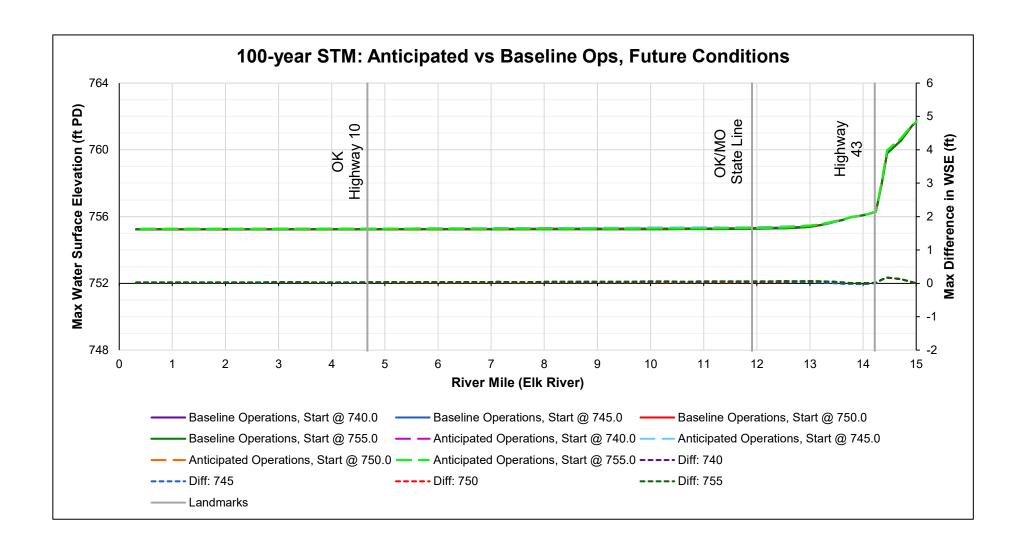


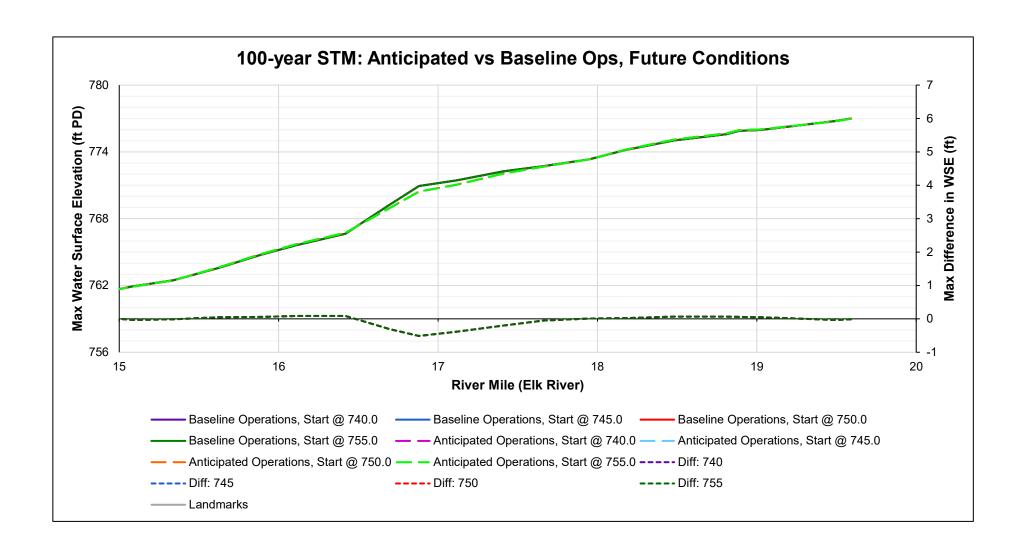












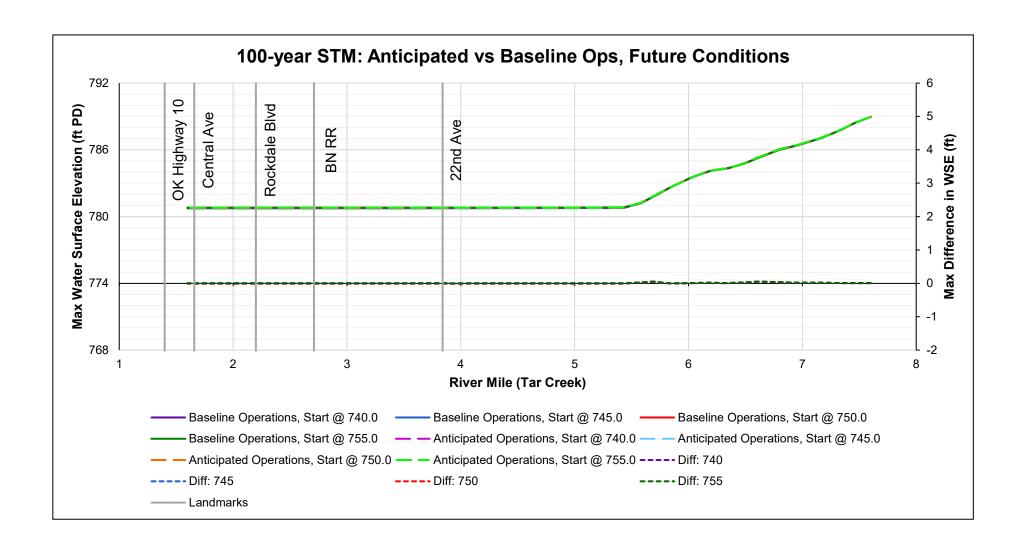


Exhibit 8 Neosho River Field Investigation

December 2022 Response to Comments on Updated Study Report

Neosho River Field Investigation

December 2022 Response to Comments on Updated Study Report

Neosho River Field Investigation

Prepared for

Grand River Dam Authority P.O. Box 409 Vinita, Oklahoma 74301

Prepared by

Anchor QEA, LLC 660 West Washington Ave Suite 302 Madison, Wisconsin 53715 Simons & Associates P.O. Box 607 Midway, Utah 84049

TABLE OF CONTENTS

1 Neosho River Field Investigation	1
1.1 Bathymetric Survey	1
1.2 Sediment Vibracoring	3
2 References	6
Core 2	8
Core 3	8
Core 4	9
Core 5	9
Core 7	10
No sediment was recovered with Core 1 or Core 6	10
TABLES Table 1. SonTek RiverSurveyor M9 Reported Specifications	1
Table 2. Locations of Sediment Vibracore Samples	
Table 3. Sediment core descriptions	
FIGURES	
Figure 1. Bed Elevation Map from Bathymetric Survey Results; Low Head Dam is Located at Approximately RM 135.25 on the Neosho River	2
Figure 2. Sample Photo of Core Sample from Near Miami Low Head Dam Showing the Natural Armoring of the Bed at This Location	5

i

APPENDICES

Appendix A Photographs of Core Samples

1 Neosho River Field Investigation

Anchor QEA performed a field investigation in November 2022 to provide a bathymetric survey and sediment coring. The purpose of the investigation was to gather additional information about coarse sediment conditions within the Neosho River, specifically near a low head dam in Miami, Oklahoma.

1.1 Bathymetric Survey

The survey was completed using a SonTek RiverSurveyor M9 pseudo-multibeam echosounder (pMBES). The M9 allows accurate, detailed hydrographic surveying by sending sound pulses into the water column toward the bed. The time it takes for the pulses to reflect off the bottom and return to the M9 is used to determine water depth. Reported attributes of the M9 are shown in Table 1.

Table 1. SonTek RiverSurveyor M9 Reported Specifications

Transducer Configuration				
Dual 4-Beam 3.0 MHz/1.0MHz Janus at 25° Slant Angle				
0.5 MHz Vertical Beam Echosounder				
Depth Measurements				
Range	0.20 m to 80 m			
Accuracy	1%			
Resolution	0.001 m			

Source: SonTek

The M9 features multiple sonar heads, which map a swath of the riverbed, providing more coverage than a single beam echosounder. Anchor QEA mounted the sonar unit on a powered floating platform and used the M9 as a remote operated vehicle to collect a closely-spaced grid of bathymetry data points. Location information was provided by differential GPS equipment and water surface elevation (WSE) information was measured with real-time kinematic GPS (RTK-GPS) equipment.

Data was collected and post-processed using HYPACK to remove outlier datapoints and interference errors. The revised point files were then exported and used to create a three-dimensional (3D) surface. The bed elevation was determined by subtracting depths measured by the M9 from the WSE measured by RTK-GPS. Bed elevations ranged from 734 and 742 feet above the North American Vertical Datum of 1988 (NAVD88) as shown in Figure 1.

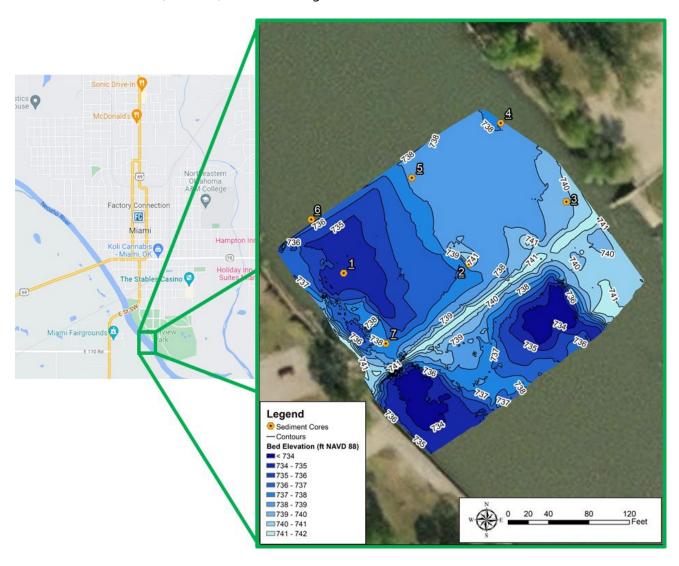


Figure 1. Bed Elevation Map from Bathymetric Survey Results; Low Head Dam is Located at Approximately RM 135.25 on the Neosho River

The low head dam protrudes approximately 6 feet out of the neighboring bed sediments. There are several deeper locations within the surveyed reach; one is located upstream of the dam, and the other two are located downstream.

1.2 Sediment Vibracoring

Seven locations were selected for sediment vibracore sampling. The locations, date, and time of sediment coring are provided in Table 2.

Table 2. Locations of Sediment Vibracore Samples

Core ID	Northing (US ft, OK State Plane N)	Easting (US ft, OK State Plane N)	Date	Time
Core 1	692448.306	2881571.069	11/19/2022	15:11:51
Core 2	692457.22	2881695.279	11/20/2022	10:44:44
Core 3	692518.869	2881791.416	11/20/2022	11:12:04
Core 4	692596.812	2881726.468	11/20/2022	11:32:05
Core 5	692542.601	2881638.603	11/20/2022	12:02:57
Core 6	692501.402	2881539.034	11/20/2022	12:20:24
Core 7	692378.619	2881612.767	11/20/2022	12:31:29

During vibracoring, the water depth was measured by sonar depth sounder or lead line. Location and WSE measurements were collected using RTK-GPS to determine bed elevations. Once all equipment was positioned above the intended sampling site, the vibracore was started and lowered to refusal.

Seven locations were sampled with the vibracoring equipment, though two produced no sediment (i.e., depth to refusal was 0 feet) as shown in Table 3. Core 7 consisted primarily of finer material. The rest of the core samples contained primarily coarser sand and gravel material with evidence of surface armoring.

Table 3. Sediment core descriptions

Core ID	Depth (ft)	Water Level (ft NAVD88)	Mudline Elevation (ft NAVD88)	Core Length (ft)
Core 1	7.6	743.339	735.739	0.00
Core 2	5.7	743.583	737.883	0.62
Core 3	4.5	744.965	740.465	0.37
Core 4	5.67	744.509	738.839	0.56
Core 5	6.25	744.522	738.272	0.50
Core 6	10.25	744.743	734.493	0.00
Core 7	7.33	744.497	737.167	0.67

Figure 2. Sample Photo of Core Sample from Near Miami Low Head Dam Showing the Natural Armoring of the Bed at This Location

The armoring is expected as part of a natural process in streams as finer materials are washed from the top layers of the bed, leaving only coarse-grained sediment on the surface (see, for example, Bunte and Abt 2001). This armoring prevents motion of underlying finer material and decreases likelihood of bedload sediment transport.

2 References

Bunte, K. and S.R. Abt, 2001. Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring. US Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-74.

Appendix A Photographs of Core Samples

Core 2

Core 4 Core 5

Core 7

No sediment was recovered with Core 1 or Core 6