ECOSYSTEMS & WATERSHED MANAGEMENT 420 Hwy 28, PO Box 70 Langley, OK 74350-0070 918-256-5545, 918-256-0906 Fax

January 20, 2022

Ms. Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street NE Washington DC 20426

Subject: Pensacola Hydroelectric Project (FERC Project No. 1494-438) Sedimentation Study Technical Meeting

Dear Secretary Bose:

On January 14, 2022, the Grand River Dam Authority (GRDA) held the technical meeting for the Sedimentation Study as part of the relicensing process for the Pensacola Hydroelectric Project (FERC No. 1494). The purpose of the technical meeting was to review the results of the Sedimentation Study since the Initial Study Report (ISR) and discuss GRDA's proposed modified study plan for the study as described in its response filed on December 29, 2021.

The list of attendees for the meeting is attached as Attachment A and the presentation is attached as Attachment B.

GRDA looks forward to receiving the Commission's determination for the second study season in the relicensing process.

If you have any questions, please contact Jacklyn Jaggars at jacklyn.jaggars@grda.com or 918-981-8473.

Sincerely,

Brein Bland

Brian Edwards Executive Vice President

We deliver affordable, reliable ELECTRICITY,

ENVIRONMENTAL STEWARDSHIP.

We are dedicated to

Our EMPLOYEES

Oklahoma Agency of Excellence.

ECONOMIC DEVELOPMENT, providing resources and

supporting economic growth.

are our greatest asset in meeting our mission to be an

with a focus on EFFICIENCY and a commitment to

WWW.GRDA.COM

<u>Attachment A</u> List of Attendees

Pensacola Project (FERC No. 1494) Sedimentation Study Technical Meeting January 14, 2022 9:00 AM Virtual

First Name	Last Name	Email	Title	Company		
Norman	Hildebrand	nhildebrand@wyandotte-nation.org	Second Chief	Wyandotte Nation		
N. Larry	Bork	lbork@gseplaw.com	Mr.	Goodell Stratton Edmonds & Palmer, LLP		
Allison	Ross	allison.ross@bia.gov	Environmental Protection Specialist	Bureau of Indian Affairs, Eastern Oklahoma		
Laura	Rozumalski	lrozumalski@anchorqea.com	Principal Engineer	Anchor QEA		
Rachel	McNamara	rachel.mcnamara@ferc.gov	Recreation and Land Use Coordinator	FERC		
Tyler	Gipson	tyler.gipson@swpa.gov	Engineer	Southwestern Power Administration		
Walker	Stanovsky	walkerstanovsky@dwt.com	Associate Attorney	Davis Wright Tremaine LLP		
Elizabeth	Toombs	elizabeth-toombs@cherokee.org	Tribal Historic Preservation Officer	Cherokee Nation		
James	Munkres	jwmunkres@osagenation-nsn.gov	Archaeologist	Osage Nation		
Mike	Plunkett	mike.plunkett@odwc.ok.gov	NE Regional Supervisor	Oklahoma Department of Wildlife		
Stephen	Bowler	stephen.bowler@ferc.gov	South Branch Chief	FERC		
Tyler	Rychener	tyler.rychener@wsp.com	Environmental Scientist	WSP		
Во	Reese	breese@miamiokla.net	City Manager	City of Miami Oklahoma		
Randall	Kolar	kolar@ou.edu	Professor	University of Oklahoma		
Rebecca	Jim	rjim@neok.com	Executive Director	LEAD Agency, Inc.		
Robert	Nairn	nairn@ou.edu	Professor	OU		
Shanon	Phillips	shanon.phillips@conservation.ok.gov	Water Quality Division Director	Oklahoma Conservation Commission		
Bob	Simons	rksimons@rksimons.com	Dr.	Simons & Associates		
Nicholas	Funk	nicholas.funk@wsp.com	Environmental Analyst	WSP-USA		
Kate	Moore	kate.moore@bia.gov	Regional Archeologist	SPRO BIA		
kimeka	price	price.kimeka@epa.gov	Environmental Engineer	U.S. E.P.A. Region 6		
Craig	Gannett	craiggannett@dwt.com	Partner	Davis Wright Tremaine LLP		
David	Williams	david.j.williams@usace.army.mil	Chief, Hydrology and Hydraulics Branch	USACE Tulsa District		
Kevin	Stubbs	kevin_stubbs@fws.gov	Fish and Wildlife Biologist	USFWS		
Rick	Schlottke	rschlottke@sctribe.com	Environmental Director	Seneca Cayuga Natgion		
Alynda	Foreman	alynda.foreman@wsp.com	Lead Ecologist	WSP		
Jeanne	Sweet-Edwards	jeanne.edwards@ferc.gov	Environmental Biologist	FERC		
Valery	Giebel	valery.giebel@sol.doi.gov	Attorney	Dept. of the Interior		
Josh	Johnston	josh.johnston@odwc.ok.gov	Regional Supervisor of Fisheries	Oklahoma Department of Wildlife Conservation		
Kristina	Wyckoff	kwyckoff@okhistory.org	Section 106 Coordinator / Historical Archaeologist	Oklahoma State Historic Preservation Office		
Lynda	Ozan	lozan@okhistory.org	Deputy SHPO	OK/SHPO		
Brad	Johnston	brad.johnston@odwc.ok.gov	Fisheries Biologist	Oklahoma Department of Wildlife Conservation		
Bless	Parker	bparker@miamiokla.net	Mayor	City of Miami		
Brent	Teske	bteske@anchorqea.com	Water Resources Engineer	Anchor QEA		
Chayla	(Nelson) Witherspoon	chn1513@utulsa.edu	Intern	DOI-SOL		
Martin	Lively	martinlively@gmail.com	Grand Riverkeeper	LEAD Agency, Inc.		
Amber	Leasure-Earnhardt	amber.leasure-earnhardt@ferc.gov	Attorney-Advisor	FERC		
Agatha	Benjamin	benjamin.agatha@epa.gov	Environmental Engineer/Scientist	USEPA		
Jay	Greska	jay.greska@wsp.com	Lead Consultant	WSP		
Dai	Thomas	dai.thomas@tetratech.com	Senior Engineer	Tetra Tech		
Darrell	Townsend	darrell.townsend@grda.com	VP	GRDA		

Pensacola Project (FERC No. 1494) Sedimentation Study Technical Meeting January 14, 2022 9:00 AM Virtual

First Name	Last Name	Email	Title	Company		
Elizabeth	McCormick	elizabeth.mccormick@troutman.com	Associate	Troutman Pepper Hamilton Sanders		
Peggy	Ziegler	pziegler@gseplaw.com	Litigation Paralegal	Goodell, Stratton, Edmonds & Palmer LLP		
Shawn	Puzen	shawn.puzen@meadhunt.com	Consultant	Mead & Hunt		
Scott	Cox	scott.cox@odwc.ok.gov	Biologist	ODWC		
Tyler	Cline	tcline@miamiokla.net	Director of Utilities	City of Miami OK		
Brad	Rogers	brad.rogers@conservation.ok.gov	Water Quality Liaison	Oklahoma Conservation Commission		
Jesse	Piotrowski	jesse.piotrowski@meadhunt.com	Water Resources Engineer	Mead & Hunt		
Ryan	Greif	ryan.greif@meadhunt.com	H&H Engineering Supervisor	Mead & Hunt		
Miroslav	Kurka	miro.kurka@meadhunt.com	Group Leader	Mead & Hunt, Inc.		
Tamara	Jahnke	tamara.jahnke@grda.com	Asst Gen Counsel	GRDA		
Earl	Hatley	earlhatley77@gmail.com	President	LEAD Agency, Inc.		
Steve	Jacoby	steve.jacoby@grda.com	VP Gen Engineering	Grand River Dam Authority		
Charles	Sensiba	charles.sensiba@troutman.com	Partner	Troutman Pepper		
Shannon	O'Neil	shannononeil@dwt.com	Associate	Davis Wright Tremaine		
Neetu	Deo	navreet.deo@ferc.gov	Coordinator	FERC		
Dan	Sullivan	daniel.sullivan@grda.com	CEO	Grand River Dam Authority		
Bob	Harshaw	robert.harshaw@grda.com	Program Manager	Grand River Dam Authority		
Steve	Jacoby	steven.jacoby@grda.com	Engineer	Grand River Dam Authority		
Nick	Hathaway	nick.hathaway@meadhunt.com	Engineer	Mead & Hunt		
Bob	Simons	lksimons1@gmail.com	Owner	Simons & Associates		
Brian	Edwards	brian.edwards@grda.com	Executive Vice President	Grand River Dam Authority		

<u>Attachment B</u> Sedimentation Study Presentation

Grand Lake Sedimentation Study Initial Study Report January 14th, 2022

Anchor QEA Simons & Associates

Outline

- Overview of study
- Water level monitoring
- Sediment sampling
 - Grab samples
 - SEDflume sampling
 - Transport measurements
- Model development
 - Planned procedure
 - Hydraulic calibration
 - Challenges
 - Sediment calibration

Study Overview

- Study Goals and Objectives:
 - Determine potential effect of Project operations on sediment transport, erosion, and deposition in the lower reaches of tributaries to Grand Lake upstream of Pensacola Dam
 - Provide an understanding of sediment transport processes and patterns upstream of Grand Lake on the Neosho, Spring, and Elk rivers, as well as on Tar Creek
- Study Tasks:
 - Analyze historical data
 - Collect additional field measurements to determine sediment properties
 - Develop HEC-RAS sediment transport model
 - Determine sediment supply from the main stem river and tributaries
 - Analyze historical sedimentation trends and extrapolate trends

Outline

- Overview of study
- Water level monitoring
- Sediment sampling
 - Grab samples
 - SEDflume sampling
 - Transport measurements
- Model development
 - Planned procedure
 - Hydraulic calibration
 - Challenges
 - Sediment calibration

Water Surface Monitors

- Installed at 16 locations
 - Dec 2016

Water Surface Monitors

- Installed at 16 locations
 - Dec 2016
- Retrieved
 - Aug 2017
 - Mar 2018
 - Apr 2019
 - Dec 2020
- Data gaps and errant data in some records
 - Loggers washed away, vandalized
 - Inaccessible due to high water levels
 - Effects due to debris fouling

Outline

- Overview of study
- Water level monitoring
- Sediment sampling
 - Grab samples
 - SEDflume sampling
 - Transport measurements
- Model development
 - Planned procedure
 - Hydraulic calibration
 - Challenges
 - Sediment calibration

Sediment Grab Sampling

• 62 surface sediment samples collected Dec 2019

Location	Samples per Study Plan	Samples Collected		
Neosho Upstream of Miami	2	3		
Neosho Miami – Wyandotte	5	17		
Neosho Downstream of Wyandotte	3	9		
Tar Creek	10	13		
Spring River	10	10		
Sycamore Creek	0	1		
Elk River	0	8		
Horse Creek	0	1		
TOTAL	30	62		

• Results showed mix of gravel & cohesive material

Bed Material Analysis: Bimodal Distribution

- As presented in ISR:
 - Cohesive sediment in the system is washed downstream and into the reservoir
 - Riverbed is primarily sand and gravel
 - Lakebed is primarily silt and clay

Critical Shear Stress

- Cohesive sediment requires additional information for modeling
- Critical shear stress
 - No sediment transport below critical shear
 - Non-cohesive sediment (sand, gravel, rocks)
 - Based on density & grain size
 - Constant throughout sediment layer
 - Individual grains move independently
 - Cohesive sediment (clay, silt)
 - Based on cohesive forces
 - Typically changes with depth due to consolidation
 - Clumps of sediment may move together

SEDflume Core Sampling

- Box cores collected Mar 2020
 - Not included in original plan
 - Needed critical shear stress information to develop cohesive sediment parameters for modeling
- Critical shear stress evaluations
 - Core is placed in SEDflume
 - Water flows over core surface at known shear stress
 - Core raised into flume as it erodes
 - Rate of erosion at specified shear recorded

SEDflume Test Results

Sample Depth [cm]	Median Grain Size [µm]	Wet Bulk Density [g/cm ³]	Dry Bulk Density [g/cm³]	Loss on Ignition	τ _{no} [Pa]	τ ₁ [Pa]	τ _c Linear [Pa]	τ _c Power [Pa]	Final τ _c [Pa]
0.0	11.89	1.25	0.46	5.2%	0.2	0.4	0.24	0.25	0.25
5.3	11.78	1.39	0.70	5.0%	0.8	1.6	0.86	0.75	0.80
10.8	13.68	1.41	0.73	5.2%	0.8	1.6	0.86	0.74	0.80
15.6	13.54	1.4	0.78	5.2%	0.8	1.6	0.86	0.72	0.80
20.4	13.47	1.43	0.77	5.3%	1.6	3.2	1.84	1.73	1.73
MEAN	12.87	1.38	0.69	5.2%	0.84	1.68	0.93	0.84	0.88

Sediment Transport Sampling

- Locations of USGS Gages
- Follow USGS sampling guidelines
- SSC measurements
 - Typically fines
- Bedload transport
 - Measurements showed no bedload transport

Sediment Transport vs. Discharge

- Helped fill data gaps in USGS records
- Fit relationship between discharge and sediment transport

Outline

- Overview of study
- Water level monitoring
- Sediment sampling
 - Grab samples
 - SEDflume sampling
 - Transport measurements
- Model development
 - Calibration/validation
 - Hydraulic calibration
 - Challenges
 - Sediment calibration

STM Development

- Sediment Transport Model (STM)
 - Three terrain datasets
 - 1998 Bathymetry/topography
 - From 1998 REAS information
 - 2009 Bathymetry/topography
 - Grand Lake: 2009 OWRB survey
 - Upstream areas: 2017 USGS survey
 - 2019 Bathymetry/topography
 - Grand Lake: 2019 USGS survey
 - Upstream areas: 2017 USGS survey

STM Calibration

- Start with 1998 terrain
- Create sediment input files
 - Based on field data, lab analyses

Erosion Rate (cm/s)

STM Calibration

- Start with 1998 terrain
- Create sediment input files
 - Based on field data, lab analyses
- Run model for 1998 2009
 - Calibrate sediment erosion/deposition patterns to measured channel data

STM Calibration

- Start with 1998 terrain
- Create sediment input files
 - Based on field data, lab analyses
- Run model for 1998 2009
 - Calibrate sediment erosion/deposition patterns to measured channel data
- Run model for 2009 2019
 - Validate model predictions against measured channel data

STM Hydraulic Calibration

- Match recorded Water Surface Elevation (WSE) data
 - USGS gaging stations
 - Neosho River
 - Tar Creek
 - Spring River
 - Elk River
 - Pensacola Dam
 - High water marks
 - Anchor QEA monitoring sites

1998 Geometry Inconsistencies

- Elk River at Hwy 43 Bridge
 - USGS gage WSE < 1998 riverbed

1998 Geometry Inconsistencies

- Neosho River above Tar Creek
 - Artificially smooth profile

1998 Geometry Inconsistencies

- Neosho River, Upper Grand Lake
 - 20-30 ft apparent elevation difference

Sub-Bottom Profiling

- Sub-bottom profiler (SBP)
 - Similar to bathymetric surveying sonar systems
 - Higher power allows pulses to penetrate soft bed materials
 - Provides information on sediment layer thickness

Sub-Bottom Profile Waterfalls

- Graphical outputs show sediment layers
 - **Teal** line is layer transition
 - Orange lines are "multiples" or secondary reflections

Data Collection

- Collected SBP data at 9 transects
- Presenting data from
 - RM 112.34
 - RM 103.72

Terrain Comparisons

- Cross-section collected at
 RM 112.34
- Profile comparison shows apparent ~30 ft of deposition

740 730 (a) 720 710 700 690 680

115.5

-2019 Thalweg

River Mile

110.5

← 1998 Thalweg ← 2009 Thalweg

River Profile Comparison (Neosho - Upper Grand Lake)

670

105.5

120.5

Terrain Comparisons

- Cross-section collected at
 RM 112.34
- Profile comparison shows apparent ~30 ft of deposition

Sub-Bottom Profiler Results

- Cross-section collected at RM 112.34
- Profile comparison shows apparent ~30 ft of deposition

Sub-Bottom Profiler Results

- Cross-section collected at RM 112.34
- Profile comparison shows apparent ~30 ft of deposition
- SBP shows small layer of soft material deposition (~2-3 ft)
 - Layer transition
 - Multiples

Terrain Comparisons

- Cross-section collected at RM 103.72
- Profile comparison shows apparent ~10 ft of deposition

River Profile Comparison (Neosho - Grand Lake)

Terrain Comparisons

- Cross-section collected at RM 103.72
- Profile comparison shows apparent ~10 ft of deposition

Stream Cross-Section at RM 103.72

Sub-Bottom Profiler Results

- Cross-section collected at RM 103.72
- Profile comparison shows apparent ~10 ft of deposition

742 ft 732 ft 722 ft 712 ft 702 ft 692 ft 682 ft 672 ft 662 ft 652 ft 642 ft

Sub-Bottom Profiler Results

- Cross-section collected at RM 103.72
- Profile comparison shows apparent ~10 ft of deposition
- SBP shows small layer of soft material deposition (~2-3 ft)
 - Layer transition
 - Multiple

Addressing Inconsistencies

- 1998 dataset is unreliable, not required under Study Plan
 - Verified by analysis of original datasets
- Calibrate 2009 geometry for hydraulics
 - Matches geometry used for UHM

Hydraulic Correlation with USGS Gages

- Model hydraulic calibration shows good agreement with USGS gages
 - Average difference between simulated and recorded WSEs is 0.07 ft (model over-predicts WSE)

Comparison to measured HWM

 Average differences are: +0.6 ft with July 2007 event

Comparison to measured HWM

 Average differences are: +0.6 ft with July 2007 event +0.2 ft for October 2009 event

Comparison to measured HWM

 Average differences are: +0.6 ft with July 2007 event +0.2 ft for October 2009 event -0.01 ft for December 2015 event

Comparison to Anchor QEA Loggers

• Average differences are:

Comparison to Anchor QEA Loggers

 Average differences are: +0.09 ft for January 2017 event
-0.05 ft for April 2017 event
-0.53 ft for May 2019 event

- Sediment calibration based on 2009 2019
 - Primarily Grand Lake; lower reaches of Elk, Neosho
 - Known stage-storage curves used to validate accumulation in reservoir

Sediment Transport – Reservoir Storage

- Using daily flow and sediment rating curves compute sediment inflow over time
- Compare tonnage of sediment (converted to volume using sediment density) to change in reservoir storage
- Density issues (consolidation over time, compare to data)

Reservoir Storage Volume Analysis

Reservoir Storage Volume Analysis

HEC-RAS Testing

HEC-RAS Testing

- Sediment calibration was ongoing at the time of the October ISR
 - Upstream hydrology using historic hydrographs 2009 2019
 - Downstream boundary uses historic water levels in Grand Lake 2009 2019
 - Upstream boundary conditions for sediment inflow developed based on suspended sediment rating curves
 - Development of bed material representing initial conditions considering wide range of size distributions in close proximity

- Calibration extents limited to overlap of:
 - 2009 OWRB
 - 2019 USGS

Cohesive Sediment Density Summary:

	Min Dry Density		Max Dry Density		Mean Dry
Sediment Core	lb/ft ³	% of Mean	lb/ft ³	% of Mean	Density (lb/ft ³)
Minimum	21.2	56.7%	43.7	105.4%	36.8
Mean	39.4	72.6%	61.7	118.5%	52.7
Maximum	76.2	90.0%	103.0	140.0%	93.0

Non-Cohesive Sediment Transport

- Typically transported as bedload
 - Found on beds of most streams
 - Measurements over a wide range of flows found no significant bedload transport

10000

Flow (cfs)

exceedence

Percent

10

100

1000

1000000

100000

Cohesive Sediment Transport

- Typically transported as suspended load
 - Sampling efforts show virtually all incoming sediment is suspended, cohesive material
- Stream beds consist primarily of non-cohesive material
 - Incoming material must be transported further downstream and deposited in reservoir
 - Confirms City of Miami's assertion that "cohesive sediment is carried as wash load well downstream into the reservoir, and deposition and re-entrainment of that material has very little, if any effect, on upstream channel capacity and flooding." (City of Miami response to RSP 2018)

Cohesive Sediment Characteristics

- Silt and clay compact
 - Properties vary by depth in sediment column
- Layers deposited over time
 - Deeper layers compressed by overburden
 - Higher compression increases density, critical shear stress
 - Higher critical shear stress reduces erosion rates

Ranges of Model Calibration Parameters

Calibration Factor	Hydraulic Model	Cohesive Sediment Model
Resistance to flow	Range: 300%	Range: 300%
Bed material	n/a	Bi-modal distribution Range: 1,000,000%
Critical Shear Stress	n/a	Range: 3,000%
Erosion rate	n/a	Range: 1,000,000%
Bulk density	n/a	Range: 485%

HEC-RAS Sediment Transport Model Capabilities

- Includes non-cohesive sediment transport
 - User-selected standard transport equations
- Includes cohesive sediment transport
 - One critical shear stress value for particle erosion with associated erosion rate
 - One critical shear stress value for mass wasting with associated erosion rate
 - Parameters cannot change with depth or time

Model Complexity Tradeoffs

HEC-RAS Sediment Transport Model Capabilities

HEC-RAS is attempting to model a very complex system:

- Bi-modal bed material size distribution covering 5 orders of magnitude
- Cohesive and non-cohesive sediment
- Widely-varying cohesive sediment parameters:
 - Bulk density 485%
 - Critical shear stress 3,000%
 - Erosion rate 1,000,000%

With over-simplified tool:

• One set of cohesive sediment parameters per sample that are fixed with time and depth

Sediment Transport Evaluation

- City of Miami, in response to RSP, citing ASCE Manual on Sedimentation:
 - "ASCE notes that where full calibration is not possible, 'model tests are devised so that engineering judgment can be used to assess the credibility of the calculated results.'"
- Attempted basic model run
 - Used MPM equation for non-cohesive sediment
 - Showed several feet of erosion
 - Does not match measured bedload transport

Sediment Transport Evaluation

- Basic model test
 - Adjusted parameters to MPM showed zero non-cohesive transport
 - Showed many feet of cohesive deposition in upstream reach
 - Does not match known sediment conditions
 - Adjusting parameters of non-cohesive transport should not affect cohesive transport
 - Appears to be flaw in model

Sediment Transport Evaluation

Sediment Transport Evaluation Alternatives

- Engineering judgment suggests that HEC-RAS is incapable of realistically modeling this system
- Will need alternative means of assessing sediment transport in the study area
 - Developed Proposed Modified Study Plan (PMSP)

Summary

• Water level monitoring

Summary

- Water level monitoring
- Sediment sampling
 - Grab samples
 - SEDflume sampling
 - Transport measurements

Summary

- Water level monitoring
- Sediment sampling
 - Grab samples
 - SEDflume sampling
 - Transport measurements
- Model development
 - Planned procedure
 - Hydraulic calibration
 - Challenges
 - Sediment calibration, HEC-RAS limitations

Grand Lake Sedimentation Study Proposed Modified Study Plan January 14th, 2022

Anchor QEA Simons & Associates

Outline

- Need for Proposed Modified Study Plan (PMSP)
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
- Characterization of sedimentation impacts
 - Flooding
 - Conservation pool

Outline

- Need for Proposed Modified Study Plan (PMSP)
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
- Characterization of sedimentation impacts
 - Flooding
 - Conservation pool

Need for PMSP

- The 2018 Study Plan Determination (SPD) assumes the 1998 REAS dataset is valid. New evidence shows that it is inaccurate
- The 2018 SPD relies on HEC-RAS to predict sediment erosion and deposition
 - New information indicates existing sediment conditions require complex, detailed model
 - HEC-RAS is overly simplistic, incapable of reliably predicting transport
- Modifications to the existing model methodology are required

Outline

- Need for PMSP
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
- Characterization of sedimentation impacts
 - Flooding
 - Conservation pool

Ongoing Fieldwork

- Address questions about deposition from 1998 REAS dataset
- Two primary components
 - Sub-bottom profiling
 - Vibracore sampling

Sub-Bottom Profiling

- Sub-bottom profiler (SBP)
 - Similar to bathymetric surveying sonar systems
 - Higher power allows pulses to penetrate soft bed materials
 - Provides information on sediment layer thickness

Vibracore Sampling

- Vibracoring used to collect sediment core samples
- 16 ft tubes vibrated into sediment bed
- Samples provide
 - Layer thickness
 - Grain size distribution

SBP and Vibracore Sampling

- Target areas of reported deposition
- SBP data verified by vibracoring
- Field crew collected 9 SBP transects along Neosho River
 - From RM 103.72 (Hickory Point)
 - To RM 125.56 (~1 mi downstream of Connors Bridge)

Terrain Comparisons

- Cross-section collected at RM 112.34
- Profile comparison shows apparent ~30 ft of deposition

740 730 <u>a</u> 720 Elevation (ft, 1 002 002

115.5

-2019 Thalweg

River Mile

110.5

← 1998 Thalweg ← 2009 Thalweg

River Profile Comparison (Neosho - Upper Grand Lake)

680

670

105.5

120.5

Terrain Comparisons

- Cross-section collected at
 RM 112.34
- Profile comparison shows apparent ~30 ft of deposition

Sub-Bottom Profiler Results

- Cross-section collected at RM 112.34
- Profile comparison shows apparent ~30 ft of deposition

Sub-Bottom Profiler Results

- Cross-section collected at RM 112.34
- Profile comparison shows apparent ~30 ft of deposition
- SBP shows small layer of soft material deposition (~2-3 ft)
 - Layer transition
 - Multiples

Outline

- Need for Proposed Modified Study Plan (PMSP)
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
- Characterization of sedimentation impacts
 - Flooding
 - Conservation pool

Sediment Transport Evaluation Alternatives

- Engineering judgment suggests that HEC-RAS is incapable of modeling this system
- Simons & Simons (1997):
 - "If it is not possible to adequately calibrate and verify a model in a given application, it is appropriate to utilize interpretations of available data, geomorphic and other analysis techniques for prediction purposes. Even when a model can successfully be calibrated and verified, it is appropriate to use these other techniques as an independent check on the modeling results."

Sediment Transport Evaluation Alternatives

- Simons & Simons in *Civil Engineering* (Sept 1996):
 - "Using a computer model to analyze and predict sediment transport only works when the analyst considers the model's limitations and the physical processes involved and conducts adequate calibration and verification."
 - Citing a 1988 FERC document: "Computer modeling has long been used by scientists and engineers to aid in the design and operation of water resource projects. While models are highly useful tools, they can also be a source of misinformation for users and project reviewers who do not understand all the assumptions, capabilities and limitations of a particular computer model. Such is the case with computerized sedimentation models."
 - Citing same 1988 FERC document: "[A computer model] cannot be a substitute for professional experience."

Fundamental Relationships:

- Sedimentation patterns are function of:
 - Incoming sediment load
 - Longitudinal and temporal distribution of hydraulic shear stress
- Percentage of sediment passing a given cross-section (or depositing upstream) is function of:
 - Distribution of shear stress at given location
- Relationship exists between
 - Shear stress at given location
 - Quantity of sediment passing that location or depositing upstream

- Relationships will be developed between:
 - Historic shear stress at specific locations
 - Quantity of sediment passing those locations
 - Quantity of sediment depositing between locations
- Relationships will use:
 - Historic shear stresses from 2009 to 2019 using HEC-RAS
 - Historic incoming sediment loads from measured flow data and sediment rating curves
 - Amount of sediment deposited at various sites within streams and reservoir based on bathymetric changes from 2009 to 2019

Hydraulic shear: example of longitudinal shear profiles

Bed profile change 2009 – 2019

Comparison of hydraulic shear to sedimentation pattern

Data and analysis confirm City of Miami's assertion:

"[C]ohesive sediment is carried as wash load well downstream into the reservoir, and deposition and re-entrainment of that material has very little, if any effect, on upstream channel capacity and flooding." (City of Miami response to RSP 2018)

Outline

- Need for Proposed Modified Study Plan (PMSP)
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
- Characterization of sedimentation impacts
 - Flooding
 - Conservation pool

- Using 2019 cross-sections and bathymetry, run HEC-RAS STM (fixed channel geometry) for proposed flow and operation condition (e.g. 50-year flow/operation scenario) to produce shear values for every time step and location
- Develop shear-duration curves at selected locations (same ones used in developing the shear relation with historic sedimentation from 2009-2019 run, at approximately a 3-5 mile spacing and/or additional points of interest)
- Calculate incoming sediment load from Neosho, Tar, Spring, Elk using 50-year flow regime coupled with sediment rating curves for each river
- Using shear-duration curves at selected locations related to % sediment passing or depositing from 2009-2019, distribute 50-year sediment volume on top of 2019 cross-sections/bathymetry

- Adjust sediment deposition pattern based on sediment consolidation over time (e.g. 50 years)
- Based on sedimentation pattern for any given scenario develop new crosssections to define the channel geometry
- The adjusted sedimentation pattern produces new channel cross-sections which will be used as input geometry
- Using this new channel geometry for a given scenario, the results of the fixed bed STM will then be utilized to analyze flooding by simulating inflow events with the reservoir at 742 and 745 ft PD

- Neosho River profile shows that from 2009 to 2019, there was little change in bed elevation from approximately RM 109 to 122
 - Most sedimentation occurred downstream of RM 102 (near Sailboat Bridge)
- The reach of primary interest lies between the Elk River and Spring River regarding the potential for sedimentation
 - Analysis will focus most attention here by more closely spacing the locations where hydraulic shear-duration graphs related to percentage of sediment passing each location
- Remaining amount of sediment that passes this reach continues to flow and deposit in the remaining reach towards the dam and cannot present any potential backwater or upstream flooding effect

- Need for PMSP
 - Questions remain about actual sediment deposition
 - HEC-RAS is incapable of handling necessary modeling tasks

- Need for PMSP
 - Questions remain about actual sediment deposition
 - HEC-RAS is incapable of handling necessary modeling tasks
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling

- Need for PMSP
 - Questions remain about actual sediment deposition
 - HEC-RAS is incapable of handling necessary modeling tasks
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
 - Use STM bed shear stress outputs
 - Evaluate sediment deposition/transport over time based on modeled shear stress

- Need for PMSP
 - Questions remain about actual sediment deposition
 - HEC-RAS is incapable of handling necessary modeling tasks
- Additional fieldwork
 - Sub-bottom profiling
 - Vibracore sampling
- Sediment transport evaluation
 - Use STM bed shear stress outputs
 - Evaluate sediment deposition/transport over time based on modeled shear stress
- Characterization of sedimentation impacts
 - Flooding and conservation pool

