

Infrastructure Report

Pensacola Hydroelectric Project Project No. 1494

September 30, 2021

CONTENTS

Table of Contents

Exe	ecutive	Summa	aryIII				
List	t of Ab	breviatio	ns and Termsiv				
1.	Introd	luction a	nd Background1				
	1.1	Project	Description1				
	1.2	Vertical	Datums1				
	1.3	Study Plan Proposals and Determination1					
2.	Study	Objecti	ves and Schedule				
3.	Study	Area					
4.	Metho	odology .					
	4.1	Infrastru	ucture Types and Data Sources5				
	4.2	Consult	ation with Stakeholders6				
		4.2.1	Emergency Management Agencies				
		4.2.2	Tribal Consultation				
	4.3	Modelin	ng Scenarios7				
	4.4	GIS Da	ta Extraction				
	4.5	Mappin	g and Tabular Data8				
		4.5.1	Purpose of Maps8				
		4.5.2	Map Description				
		4.5.3	Tabular Data9				
5.	Study	Results					
	5.1	Class 1	differences10				
	5.2	Class 2	differences11				
	5.3	Class 3	differences11				
6.	Discu	ssion of	Results				
	6.1	Class 1	differences				
		6.1.1	Rockdale Boulevard Bridge (ID 57)13				
		6.1.2	Lion Taylor Park (ID 94)14				
		6.1.3	Little Elm Creek Bridge (ID 97)14				
		6.1.4	Riverview Park South (ID 103)15				
	6.2		differences15				
		6.2.1	Hudson Creek Bridge (ID 127)				
		6.2.2	Wyandotte High School (ID 150)15				
	6.3		differences				
		6.3.1	Twin Bridges State Park (ID 139)16				

i

7. 8.

6.3.2	Shawnee Branch Bridge (ID 140)	17
6.3.3	Fly Creek Bridge (ID 166)	17
6.3.4	Bernice State Park (ID 167)	17
6.3.5	Cherokee Seaplane Base (ID 175)	
6.3.6	Wolf Creek Park (ID 181)	19
6.3.7	Grove Springs Park (ID 185)	19
6.3.8	Bacon's Heliport (ID 206)	20
Conclusions.		21
References		

List of Figures

Figure 1. Datum transformations and conversions.	2
Figure 2. Infrastructure study area	4
Figure 3. September 1993 event inundation extents at Rockdale Boulevard Bridge (ID 57)	.13
Figure 4. September 1993 event inundation extents at Lion Taylor Park (ID 94)	.14
Figure 5. December 2015 event inundation at Riverview Park South (ID 103)	.15
Figure 6. July 2007 event inundation at Wyandotte High School (ID 150)	.16
Figure 7. July 2007 event inundation at Twin Bridges State Park (ID 139)	.17
Figure 8. December 2015 event inundation at Bernice State Park (ID 167)	.18
Figure 9. December 2015 event inundation at Cherokee Seaplane Base (ID 175)	.18
Figure 10. December 2015 event inundation at Wolf Creek Park (ID 181)	.19
Figure 11. December 2015 event inundation at Grove Springs Park (ID 185)	.20
Figure 12. December 2015 event inundation at Bacon's Heliport (ID 206)	.20

List of Tables

Table 1. Infrastructure study schedule and tasks.	3
Table 2. List of infrastructure types and data sources.	6
Table 3. Emergency management agencies contacted	7
Table 4. Difference in inundation area due to difference in starting reservoir elevation	.10
Table 5. Infrastructure locations with Class 1 differences.	.11
Table 6. Infrastructure locations with Class 2 differences.	.11
Table 7. Infrastructure locations with Class 3 differences.	.12

List of Appendices

Appendix A	Sample email to local emergency management agencies
Appendix B	List of emergency management agencies contacted
Appendix C	
Appendix D	Mailing list for certified letters
Appendix E	Critical infrastructure maps
Appendix F	Tabular data sheets

Executive Summary

Mead & Hunt, Inc. (Mead & Hunt) is assisting Grand River Dam Authority (GRDA, Licensee) in the relicensing of the Pensacola Hydroelectric Project (Project), which is regulated by the Federal Energy Regulatory Commission (FERC, Commission). Flood control operations at the Project are regulated by the United States Army Corps of Engineers (USACE).

The Commission recommended an Infrastructure Study (Study) to determine a range of inflow conditions for which hydraulic model results (separate study) show Project operations may influence the frequency or depth of flooding. Specifically, the Commission requested maps and tables identifying the frequency and depth of flooding for each item of infrastructure.

Mead & Hunt developed a hydraulic model of the area upstream of the Project along with a range of starting reservoir elevations. Inflow events representing a range of flood frequency were used for the Study. Hydraulic results were extracted at infrastructure locations. Infrastructure locations were mapped, and tabular data of inundation depth were developed. The difference in depth between different starting reservoir elevations was also tabulated.

Only 6% of the infrastructure locations studied experience an appreciable increase in maximum inundation depth due to a starting reservoir elevation increase from 742 feet to 745 feet. All appreciable increases in maximum inundation depth occur during high-flow conditions when the USACE controls the flood control operations under the Flood Control Act of 1944, except when the time of maximum inundation depth is solely a function of inflow event arrival time and not reservoir elevation. Therefore, no additional adverse impacts exist due to Project operation.

List of Abbreviations and Terms

Commission	Federal Energy Regulatory Commission
	Department of Homeland Security
	Environmental Protection Agency
FAA	Federal Aviation Administration
FEMA	Federal Emergency Management Agency
FRS	Facility Registry Service
	Farm Service Agency
GIS	Geographic Information Systems
GNIS	Geographic Names Information System
Grand Lake	Grand Lake O' the Cherokees
GRDA	Grand River Dam Authority
HEC	Hydrologic Engineering Center
HIFLD	Homeland Infrastructure Foundation Level Database
ISR	Initial Study Report
Kerr Dam	Robert S. Kerr Dam
Licensee	Grand River Dam Authority
MESTA	Mayes Emergency Service Trust Authority
NAIP	National Agricultural Imagery Program
NAVD88	North American Vertical Datum of 1988
NGVD29	National Geodetic Vertical Datum of 1929
ODOT	Oklahoma Department of Transportation
PD	Pensacola Datum
Project	Pensacola Hydroelectric Project
PSP	Proposed Study Plan
RAS	River Analysis System
RM	River Mile
	River Mile Revised Study Plan
RSP	
RSP SPD	Revised Study Plan
RSP SPD Study	Revised Study Plan Study Plan Determination
RSP SPD Study USACE	Revised Study Plan Study Plan Determination Infrastructure Study

1. Introduction and Background

1.1 **Project Description**

The Pensacola Hydroelectric Project is owned and operated by GRDA and regulated by the FERC, except that flood control operations at the Project are dictated and regulated by USACE under the authority of Section 7 of the 1944 Flood Control Act. In addition, section 7612 (c) of the National Defense Authorization Act (NDAA) of Fiscal Year 2020 states that "The Secretary [of the Army] shall have exclusive jurisdiction and responsibility for management of the flood pool for flood control operations at Grand Lake O' the Cherokees" (116th Congress, 2019).

The Pensacola Dam is located in Mayes County, Oklahoma on the Grand-Neosho River. Pensacola Dam impounds Grand Lake O' the Cherokees (Grand Lake). Construction of Pensacola Dam was completed in 1940. Downstream of Pensacola Dam, GRDA also owns and operates the Robert S. Kerr Dam (Kerr Dam) also known as the Markham Ferry Hydroelectric Project. Kerr Dam is also in Mayes County and impounds Lake Hudson, also known as Markham Ferry Reservoir. Flood control operations at both Pensacola Dam and Kerr Dam are regulated by USACE.

1.2 Vertical Datums

Data sources for this Study use a variety of vertical datums. Unless otherwise noted, data are presented in the Pensacola Datum (PD). To convert from PD to the National Geodetic Vertical Datum of 1929 (NGVD29), add 1.07 feet. To convert from NGVD29 to the North American Vertical Datum of 1988 (NAVD88), add 0.33 feet. **Figure 1**; displays datum transformations and conversions (Hunter, Trevisan, Villa, & Smith, 2020).

1.3 Study Plan Proposals and Determination

GRDA is currently relicensing the Project. The timeline of study plan proposals and determination is as follows:

- 1. On April 27, 2018, GRDA filed its Proposed Study Plan (PSP) to address hydrologic and hydraulic modeling in support of its intent to relicense the Project.
- 2. On September 24, 2018, GRDA filed its Revised Study Plan (RSP).
- 3. On November 8, 2018, the FERC issued its Study Plan Determination (SPD) for the Project.
- 4. On January 23, 2020, the FERC issued an Order on the Request for Clarification and Rehearing, which clarified the timeline for certain milestones applicable to the relicensing study plan.

The PSP and RSP did not include an infrastructure study. The SPD recommended the following strategy for assessing infrastructure impacts (FERC, 2018):

- In consultation with the stakeholders, determine a list of infrastructure types to be included in the recommended infrastructure study. At a minimum, the list should include bridges, roads, structures, and other public amenities (e.g., recreation facilities) that have the potential to be flooded under all operating scenarios (e.g., by both the USACE-directed flood control operations and GRDA's Project operations).
- 2. Using output from the H&H modeling study, determine the range of inflow conditions for which model results show that Project operations for hydropower and other purposes under the Federal

Power Act in combination with USACE directed flood control operations are likely to have an effect on the frequency or depth of flooding. Based on the infrastructure identified in step 1, provide maps and tables identifying the frequency and depth of flooding for each item of infrastructure under existing operations, as defined above, and for the range of inflow conditions where such operations may have an effect on flooding.

3. Provide additional maps and tabular information based on any alternative operating scenarios proposed or developed through consultation, as required in the H&H study.

The Study's purpose is to analyze the impact, if any, of Project operations on inundation of critical infrastructure such as bridges, roads, water systems, electric transmission, and information and communication technology.

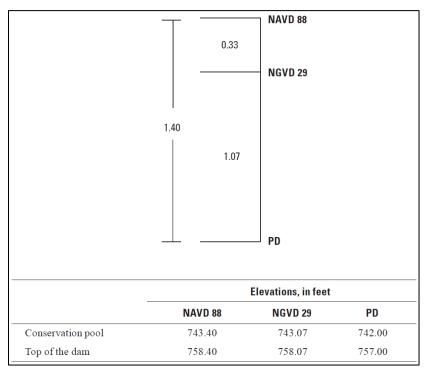


Figure 1. Datum transformations and conversions. Source: (Hunter, Trevisan, Villa, & Smith, 2020).

2. Study Objectives and Schedule

Preliminary work for the Study occurred during the first study season. This report details the results of work performed in the first study season. **Table 1** provides major tasks identified for each study season.

Table 1. Infrastructure study schedule and tasks.

STUDY SEASON	MAJOR TASKS
	Develop list of infrastructure types.
	 Begin developing Geographic Information Systems (GIS) tools to extract flooding
	characteristics from simulation results.
	 Consult with stakeholders to update list of infrastructure types.
	Map infrastructure locations.
1	Determine a range of inflow conditions for which modeling results show that Project
	operations are likely to have an effect on frequency and depth of flooding.
	Use GIS tools to process modeling results to determine frequency and depth of flooding
	at mapped infrastructure locations.
	 Prepare maps and tabular data as part of analysis.
	Develop an Initial Study Report (ISR).
2	Stakeholder comments on the ISR are addressed.

3. Study Area

The Study area encompasses areas where Project operations are likely to influence the frequency or depth of flooding upstream of the Project. Infrastructure locations potentially impacted by Project operations are displayed in **Figure 2**.

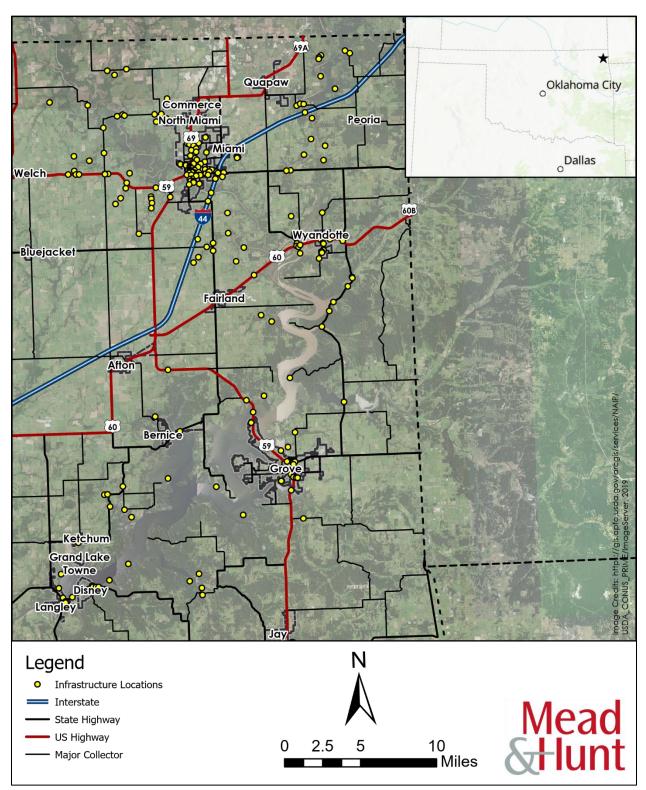


Figure 2. Infrastructure study area.

4. Methodology

Mead & Hunt defined a list of infrastructure types, gathered and mapped locations, consulted with stakeholders to refine the initial infrastructure list, and extracted inundation characteristics from simulation results. Historic inflows were examined to determine a range of conditions for which modeling results show Project operations potentially influence frequency and depth of flooding at the infrastructure locations. Maps showing the extent of inundation for multiple inflow events and starting reservoir elevations were developed. Tabular data for depth of inundation at each infrastructure location were developed for each simulated scenario.

4.1 Infrastructure Types and Data Sources

Infrastructure for the purposes of this Study is defined as facilities or structures that should be given consideration when there is potential for inundation due to Project operations. The Federal Emergency Management Agency (FEMA) includes hospitals, fire stations, police stations, and schools as examples of critical facilities (FEMA, 2020). The Department of Homeland Security (DHS) considers elements of transportation, clean water, and electricity to be of vital importance and identifies bridges and tunnels, energy infrastructure, and drinking water as key infrastructure elements (DHS, 2021).

The SPD (Federal Energy Regulatory Commission, 2018) states that:

Characterizing existing infrastructure that could be affected under flood conditions would help staff analyze the broad effect of project operation (including operation during flood conditions) on land uses, including uses related to infrastructure or municipal recreation areas.

An initial list of potential infrastructure types was developed based on examples cited above and the availability of location information from accessible data sources. These data sources include Oklahoma state sources and U.S. government sources such as the United States Geological Survey (USGS), Environmental Protection Agency (EPA), and DHS.

Mead & Hunt compiled infrastructure locations from available data sources. The primary data source for GIS features and location information was Oklahoma Digital Data Online (Oklahoma Geographic Information Council, 2021). Features obtained from this source were supplemented with data obtained from the USGS Geographic Names Information System (GNIS), EPA's Facility Registry Service (FRS), Federal Aviation Administration (FAA), and Homeland Infrastructure Foundation Level Database (HIFLD). **Table 2** presents the list of infrastructure types, features, and sources of data.

The location accuracy and original source data of these features may vary based on the data provider. Many locations were likely compiled from earlier sources of data and made available for download. Locations were cross-checked with independent mapping sources such as Google maps and county online mapping where available. Features were adjusted based on these independent sources as needed, and no ground-truthing was performed. Given multiple data sources for some of the infrastructure types, a review for duplicate features was completed and duplicates were removed. Table 2. List of infrastructure types and data sources.

INFRASTRUCTURE TYPE	FEATURES	DATA SOURCE
Airports/Heliports	FAA public use airports	https://www.faa.gov/airports/airport_safety/airportdata_5010/
Bridges	ODOT ¹ On- system bridges	Oklahoma Digital Data Online (<u>https://okmaps.org/OGI/search.aspx</u>)
	ODOT Off- system bridges	Oklahoma Digital Data Online (<u>https://okmaps.org/OGI/search.aspx</u>)
Medical/Hospitals	Hospitals and Clinics	Oklahoma Digital Data Online (<u>https://okmaps.org/OGI/search.aspx</u>); USGS GNIS (<u>https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/download-gnis-data</u>)
Law Enforcement	Police, State, Sheriff's, Patrol	Oklahoma Digital Data Online (<u>https://okmaps.org/OGI/search.aspx</u>)
Fire Stations	Fire Stations	Oklahoma Digital Data Online (<u>https://okmaps.org/OGI/search.aspx</u>); USGS GNIS (<u>https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/download-gnis-data</u>)
Education/Schools	Public Schools	Oklahoma Digital Data Online (<u>https://okmaps.org/OGI/search.aspx</u>); USGS GNIS (<u>https://www.usgs.gov/core-science-systems/ngp/board-on-geographic-names/download-gnis-data</u>)
Recreation/Public Use Areas	Parks, Fairgrounds	Oklahoma Digital Data Online (https://okmaps.org/OGI/search.aspx); USGS GNIS (https://www.usgs.gov/core-science-systems/ngp/board-on- geographic-names/download-gnis-data)
Waste and Water Treatment	Plants	EPA's FRS (<u>https://www.epa.gov/frs</u>)
Power supply	Power plants, Substations, Electric Transmission Lines	Homeland Infrastructure Foundation Level Database (HIFLD) (<u>https://gii.dhs.gov/HIFLD</u>); U.S. Energy Information Administration
FM Transmission Towers		HIFLD (https://gii.dhs.gov/HIFLD)
Cell towers		HIFLD (https://gii.dhs.gov/HIFLD)

1 Oklahoma Department of Transportation

4.2 Consultation with Stakeholders

4.2.1 Emergency Management Agencies

To refine and supplement the list of infrastructure, local emergency management agencies were contacted and given the opportunity to provide information on and/or the location of infrastructure features of concern to their jurisdictions. These contacts included county, city, and tribal emergency management entities, as well as the State of Oklahoma and USACE, Tulsa District Office.

Additional infrastructure locations identified through coordination with emergency management entities were added to the facilities GIS data layer. The list of entities contacted is provided in **Table 3**.

Table 3. Emergency management agencies contacted.

AGENCY					
Miami Emergency Management					
Ottawa County Emergency Management					
Quapaw Tribe					
Wyandotte Emergency Management					
Delaware County Emergency Management					
Grove Emergency Management					
Seneca Cayuga Nation Emergency Management					
Craig County Emergency Management					
Vinita Emergency Management					
Mayes Emergency Service Trust Authority (MESTA)					
State of Oklahoma Risk Management					
USACE Tulsa Office					

A sample request email to emergency management agencies and the record of correspondence is included in **Appendix A**. Contact with each agency was initiated through email followed by a phone contact if there was no response to the initial email. A list of the agencies contacted is included in **Appendix B**.

4.2.2 Tribal Consultation

A certified return-receipt letter was sent for tribal consultation soliciting information on and/or the location of infrastructure features of concern to their jurisdictions on November 25, 2020. Additional certified letters were sent if no receipt was returned from the initial letter, followed by a phone call if the second receipt was not returned. A sample request letter is included in **Appendix C**. The list of entities to which a certified letter was sent is included in **Appendix D**.

4.3 Modeling Scenarios

Mead & Hunt developed a hydraulic model of the area upstream of the Project, using the USACE Hydrologic Engineering Center (HEC) River Analysis System (RAS) software. A separate report on the Hydrologic and Hydraulic Modeling Study is filed concurrently with this Study report. For more information on development of the HEC-RAS model and the simulations used in the Study, see the H&H Modeling Study: Upstream Hydraulic Model Report (Mead & Hunt, 2021).

For the Study, three inflow events were used in combination with two starting reservoir elevations. Each simulation included a historical inflow event with a modified reservoir starting elevation. What residents experienced in real life when the historical events took place, regarding maximum inundation depth, only occurred when USACE took control of Project operations pursuant to its exclusive jurisdiction under the Flood Control Act of 1944, except when the time of maximum inundation depth was solely a function of inflow event arrival time and not reservoir elevation¹. Similarly, the maximum inundation depths reported in this study for the various inflow events and reservoir starting elevations only occur when the reservoir elevation is above 745 feet PD, in which circumstance the USACE would control Project operations,

¹ For more information on how inflow events impact maximum water surface elevations and maximum inundation extents, see the Hydraulic and Hydraulic Modeling: Upstream Hydraulic Model Initial Study Report.

except when the time of maximum inundation depth is solely a function of inflow event arrival time and not reservoir elevation.

The starting elevations of 742 ft PD and 745 ft PD were selected for these simulations and analysis because they represent the maximum and minimum elevations of the conservation pool. The resulting six simulations are:

- 1. September 1993 event, starting reservoir elevation of 742 ft PD
- 2. September 1993 event, starting reservoir elevation of 745 ft PD
- 3. July 2007 event, starting reservoir elevation of 742 ft PD
- 4. July 2007 event, starting reservoir elevation of 745 ft PD
- 5. December 2015 event, starting reservoir elevation of 742 ft PD
- 6. December 2015 event, starting reservoir elevation of 745 ft PD

The inflow events represent a variety of flood frequencies at the Project. The September 1993 event is estimated to have a recurrence interval of 21 years. The July 2007 event is estimated to have a recurrence interval of 4 years. The December 2015 event is estimated to have a recurrence interval of 15 years. Correlating a recurrence interval at each infrastructure location is not feasible because flow at each location is unique based on its position in the watershed. However, recurrence intervals at the Project can be considered when reviewing inundation depths and the criticality of each infrastructure location. For more information on recurrence intervals, see the H&H Modeling Study: Upstream Hydraulic Model Report (Mead & Hunt, 2021).

4.4 GIS Data Extraction

Infrastructure locations are represented as point locations in the GIS data. GIS processing tools were used to extract water depth values at specific point locations from hydraulic modeling results. Esri's Spatial Analyst software tools in ArcMap 10.8 were used to extract data from hydraulic simulations (Esri, 2021).

For each of the six simulations used in the Study, maximum water depth values were extracted at each infrastructure location. The water depth values are compiled in tabular format for each infrastructure location and are presented along with the maps as described below.

4.5 Mapping and Tabular Data

4.5.1 Purpose of Maps

The infrastructure maps provided in **Appendix E** show which infrastructure locations may be impacted under different hydraulic conditions. The infrastructure locations and simulated inundation areas are displayed on the maps.

Base map information such as roads, municipal boundaries, and county boundaries were also collected to provide reference. The 2019 aerial images displayed on the maps are provided by the U.S. Department of Agriculture's Farm Service Agency (FSA) National Agricultural Imagery Program (NAIP) (U.S. Department of Agriculture, 2021).

4.5.2 Map Description

A series of 37 maps at a scale of 1:24,000 (1 inch = 2000 ft) cover the upstream modeling area. This scale is sufficient for less developed areas. Three map series are included in **Appendix E**, one map set

for each simulated inflow event: September 1993, July 2007, and December 2015. The simulated inundation at both starting reservoir elevations (742 ft PD and 745 ft PD) is displayed on each map set.

Each 1:24,000-scale map sheet is divided further into four 1:12,000-scale map sheets for developed areas requiring more detail to present the infrastructure locations in relation to the modeled inundation area. Five 1:12,000-scale map sheets are provided for the Miami, OK area which has the largest concentration of infrastructure locations in the study area.

An overview map provided in **Appendix E** details the 1:24,000 scale and 1:12,000 scale map sheet index, provides the infrastructure point legend, and describes the inundation scenario symbology used on each map sheet.

4.5.3 Tabular Data

Tabular data presented in **Appendix F** lists maximum water depths for all six simulated scenarios at each infrastructure location. Tabular data is also provided for the difference in maximum water depth for starting reservoir elevations of 742 ft PD and 745 ft PD. The tables provide a description of the infrastructure type and list the map sheet where the infrastructure feature is located. Maximum water depths and differences in maximum depth are reported to the nearest tenth of a foot.

5. Study Results

Each map set presents the results of a simulated inundation and its effects on existing infrastructure during Project operations. Each map set represents a specific inflow event at two different starting reservoir elevations: 742 ft PD and 745 ft PD.

The purpose of the Study is to analyze the impact Project operations could have on infrastructure. First, difference in inundation area was analyzed. **Table 4** presents the difference in inundation area due to the difference in starting reservoir elevation. The total increase in inundation area due to a starting reservoir elevation of 745 ft PD – 3 feet higher than a starting reservoir elevation of 742 ft PD – is less than 1 percent for all simulated events.

Table 4. Difference in inundation area due to difference in starting reservoir elevation.

Event	Difference in Inundation Area		
September 1993	0.3 %		
July 2007	0.1 %		
December 2015	0.6 %		

Second, the difference in inundation depth was analyzed. Infrastructure locations with differences in depth greater than 0.1 feet were divided into three classes for discussion:

- 1. Class 1 differences range from greater than 0.1 feet up to 0.3 feet.
- 2. Class 2 differences range from 0.3 feet up to 0.5 feet.
- 3. Class 3 differences are greater than or equal to 0.5 feet.

Infrastructure locations meeting these criteria were placed in a class based on the greatest difference in depth for the three events.

5.1 Class 1 differences

Table 5 lists infrastructure locations with Class 1 differences, which include the following:

- ID 57 is a bridge over Tar Creek. The bridge is on Rockdale Boulevard in the left overbank² of the Neosho River at River Mile (RM) 134.0.
- ID 94 is Lion Taylor Park in Miami, OK. It is in the left overbank of the Neosho River at RM 134.5.
- ID 97 is a bridge over Little Elm Creek. The bridge is on S 580 Road in the left overbank of the Neosho River at RM 133.0. The location is approximately 0.5 miles downstream of Interstate 44 (Will Rogers Turnpike).
- ID 103 is the south side of Riverview Park in Miami, OK. It is in the left overbank of the Neosho River at RM 135.2, slightly downstream of the Highway 125 Bridge.

² In hydraulic modeling terms, left and right sides of the river are based on the downstream direction. If you are floating down the river in a boat and you look to your left, that is the left bank of the river.

Table 5. Infrastructure locations with Class 1 differences.

Infrastructure	Mon		Difference in Depth (ft)		
ID	Map Panel	Location	Sept. 1993 event	July 2007 event	Dec. 2015 event
57	B4, B4-3	Rockdale Blvd Bridge	0.2	0.1	0.0
94	B4, B4-3	Lion Taylor Park	0.2	0.1	0.0
97	B4, B4-4	Little Elm Creek Bridge	0.2	0.1	0.2
103	B4, B4-3	Riverview Park South	0.1	0.1	0.2

5.2 Class 2 differences

Table 6 lists infrastructure locations with Class 2 differences, which include the following:

- ID 127 is a bridge over Hudson Creek. The bridge is on S 580 Road in the right overbank of the Neosho River at RM 128.0.
- ID 150 is Wyandotte High School in Wyandotte, OK. It is in the left overbank of the Neosho River at RM 122.0, slightly downstream of the BN Railroad bridge.

Table 6. Infrastructure locations with Class 2 differences.

Infractructure	Мар		Difference in Depth (ft)		
Infrastructure ID	Panel	Location	Sept. 1993	July 2007	Dec. 2015
			event	event	event
127	C4	Hudson Creek Bridge	0.1	0.4	0.3
150 C6 Wya		Wyandotte High School	0.1	0.4	0.3

5.3 Class 3 differences

Table 7 lists infrastructure locations with Class 3 differences. All locations with Class 3 differences are at or below the confluence of the Spring and Neosho Rivers, or along the Spring River.

- ID 139 is the Twin Bridges State Park at the confluence of the Neosho and Spring Rivers, along the left bank of the Neosho River at RM 122.5.
- ID 140 is a bridge over Shawnee Branch. The bridge is on S 645 Road in the left overbank of the Spring River at RM 3.0.
- ID 166 is a bridge over Fly Creek. The bridge is on E 262 Road in the right overbank of Grand Lake at RM 90.0.
- ID 167 is Bernice State Park, off E Highway 85A in the right overbank of Grand Lake at RM 90.0.
- ID 175 is the Cherokee Seaplane Base in Red Arrow, OK. It is in the right overbank of Grand Lake at RM 89.0.
- ID 181 is the Wolf Creek Park and Boat Ramp near Grove, OK. It is along the left edge of Grand Lake at RM 102.5, just upstream of Sailboat Bridge.
- ID 185 is Grove Springs Park in Grove, OK. It is in the left overbank of Grand Lake at RM 102.5, just upstream of Sailboat Bridge.
- ID 206 is Bacon's Heliport. It is along the left edge of Grand Lake at RM 82.8.

Table 7. Infrastructure locations with Class 3 differences.

Infrastructure	Мар		Difference in Depth (ft)				
ID	Panel	Location	Sept. 1993 event	July 2007 event	Dec. 2015 event		
139	C5	Twin Bridges State Park	0.1	0.7	0.4		
140	C6	Shawnee Branch Bridge	0.1	0.7	0.2		
166	E3	Fly Creek Bridge	0.0	0.0	0.5		
167	E3	Bernice State Park	0.0	0.1	0.5		
175	F3	Cherokee Seaplane Base	0.0	0.1	0.5		
181	F5	Wolf Creek Park	-0.1	0.0	0.5		
185	F5	Grove Springs Park	0.0	0.1	0.5		
206	G3	Bacon's Heliport	0.0	0.1	0.5		

6. Discussion of Results

Locations where difference in maximum depth between different starting reservoir elevations is 0.1 feet or less have not been described in this study because they are not appreciable for the purpose of studying impacts on infrastructure.

Only 14 out of 228 infrastructure locations (6% of locations) studied show an appreciable increase in inundation depth if the starting reservoir elevation is 742 feet as compared to 745 feet. Of the fourteen infrastructure locations, four are categorized as Class 1 differences, two are classified as a Class 2 difference, and eight are categorized as Class 3 differences.

For a given infrastructure location, the event that causes the largest difference in depth is discussed first, followed by discussion of difference in depth for the other two events. For example, if the differences in depth for the September 1993 event, June 2007 event, and December 2015 event are 0.1, 0.5, and 0.2 feet, respectively, the July 2007 event is discussed first, followed by a discussion of the September 1993 and December 2015 events.

6.1 Class 1 differences

Class 1 differences range from greater than 0.1 feet up to 0.3 feet in this study. Class 1 differences are located at Rockdale Boulevard Bridge, Lion Taylor Park, Little Elm Creek Bridge, and the south side of Riverview Park in Miami.

6.1.1 Rockdale Boulevard Bridge (ID 57)

Rockdale Boulevard Bridge on Tar Creek is initially inundated by 1.3 feet of water for the September 1993 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 1.5 feet if the starting reservoir elevation is 745 feet. The September 1993 event inundation, displayed in **Figure 3**, extends well beyond the bridge. The bridge is unusable regardless of starting reservoir elevation.

Figure 3. September 1993 event inundation extents at Rockdale Boulevard Bridge (ID 57).

For the July 2007 event, the depth is 6.7 feet if the starting reservoir elevation is 742 feet; the depth increases by 0.1 feet if the starting reservoir elevation is 745 feet. The bridge will be impassible in either scenario. For the December 2015 event, the bridge is not inundated for either reservoir starting elevation. For all three events, increasing the starting reservoir elevation from 742 feet to 745 feet does not result in additional loss of infrastructure use at this location.

6.1.2 Lion Taylor Park (ID 94)

Lion Taylor Park is initially inundated by 0.3 feet of water for the September 1993 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 0.5 feet if the starting reservoir elevation is 745 feet. While the maximum depths are relatively shallow, the park is mostly inundated for either starting reservoir elevation, as displayed in **Figure 4**. Increasing the reservoir elevation to 745 feet at the start of the event does not result in any additional loss of infrastructure use at this location.

For the July 2007 event, the depth is 5.8 feet if the starting reservoir elevation is 742 feet; the depth increases by 0.1 feet if the starting elevation is 745 feet. The park is completely inundated in either scenario. For the December 2015 event, the park is not inundated for either reservoir starting elevation. For all three events, increasing the starting reservoir elevation from 742 feet to 745 feet does not result in additional loss of infrastructure use at this location.

Figure 4. September 1993 event inundation extents at Lion Taylor Park (ID 94).

6.1.3 Little Elm Creek Bridge (ID 97)

Little Elm Creek Bridge is inundated by 5.2 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 5.4 feet if the starting reservoir elevation is 745 feet. The bridge is unusable regardless of the starting reservoir elevation.

For the September 1993 event and the July 2007 event, the bridge is inundated by 10.1 feet of water and 15.1 feet of water respectively for a starting elevation of 742 feet; the depths increase by 0.2 feet and 0.1 feet respectively if the starting reservoir elevation is 745 feet. The initial inundation makes any increased depth resulting from a starting reservoir elevation of 745 feet negligible for all three events and does not result in any additional loss of use of the infrastructure at this location.

6.1.4 Riverview Park South (ID 103)

At the south side of Riverview Park, for the December 2015 event, the park is initially inundated by 8.0 feet of water if the starting reservoir elevation is 742 feet. Inundation depth increases to 8.2 feet if the starting reservoir elevation is 745 feet. **Figure 5** displays the inundation extent for the December 2015 event.

Figure 5. December 2015 event inundation at Riverview Park South (ID 103).

For the September 1993 event and the July 2007 event, the park is inundated by 13.8 feet of water and 18.9 feet of water respectively if the starting reservoir elevation is 742 feet; both depths increase by 0.1 feet if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.2 Class 2 differences

Class 2 differences range from 0.3 feet up to 0.5 feet in this study. Class 2 differences are located at Hudson Creek Bridge and Wyandotte High School.

6.2.1 Hudson Creek Bridge (ID 127)

Hudson Creek Bridge is initially unusable and is inundated by 17.9 feet of water for the July 2007 event if the starting reservoir elevation is 742 feet, which increases to an inundation of 18.3 feet if the starting reservoir elevation is 745 feet. For the September 1993 event and the December 2015 event, the bridge is unusable and inundated by 15.0 feet of water and 12.4 feet of water respectively if the starting reservoir elevation is 742 feet; the depths increase by 0.1 feet and 0.3 feet respectively if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.2.2 Wyandotte High School (ID 150)

Wyandotte High School is initially inundated by 0.6 feet of water for the July 2007 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 1.0 feet if the starting reservoir elevation is 745 feet. For the September 1993 event and the December 2015 event the grounds are inundated by 2.2

feet of water and 2.1 feet of water respectively if the starting reservoir elevation is 742 feet; the depths increase by 0.1 feet and 0.3 feet respectively if the starting reservoir elevation is 745 feet.

The Wyandotte School property is protected by an embankment. As displayed in **Figure 6**, there is a break in inundation due to the embankment and the inundation polygon that includes the school is disconnected from the main inundation polygon. This is a limitation of the study data and indicates that the school should not be inundated if the higher elevation of the embankment prevents overland flow from entering the school property.

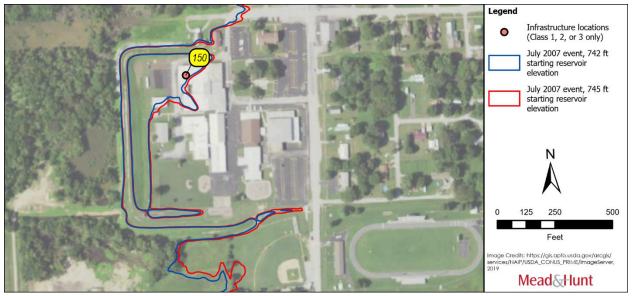


Figure 6. July 2007 event inundation at Wyandotte High School (ID 150).

6.3 Class 3 differences

Class 3 differences are differences greater than or equal to 0.5 feet in this study. Class 3 differences are located at Twin Bridges State Park, Shawnee Branch Bridge, Fly Creek Bridge, Bernice State Park, Cherokee Seaplane Base, Wolf Creek Park, Grove Springs Park, and Bacon's Heliport.

6.3.1 Twin Bridges State Park (ID 139)

Twin Bridges State Park is initially inundated by 7.8 feet of water for the July 2007 event if the starting reservoir elevation is 742 feet. All amenities other than part of the parking area are unusable. Inundation depth increases to 8.5 feet if the starting reservoir elevation is 745 feet. Inundation from the July 2007 event is displayed in **Figure 7**.

For the September 1993 event and the December 2015 event, the park is inundated by 12.4 feet of water and 10.0 feet of water respectively if the starting reservoir elevation is 742 feet; the depths increase by 0.1 feet and 0.4 feet respectively if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

Figure 7. July 2007 event inundation at Twin Bridges State Park (ID 139).

6.3.2 Shawnee Branch Bridge (ID 140)

The Shawnee Branch Bridge is initially unusable and is inundated by 2.4 feet of water for the July 2007 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 3.1 feet of inundation if the starting reservoir elevation is 745 feet. The Shawnee Branch Bridge is already unusable for the July 2007 event regardless of the starting reservoir elevation of the reservoir.

For the September 1993 event and the December 2015 event, the bridge is inundated by 10.5 feet and 6.3 feet respectively if the starting reservoir elevation is 742 feet; the depths increase by 0.1 feet and 0.2 feet respectively if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.3.3 Fly Creek Bridge (ID 166)

The Fly Creek Bridge is initially unusable and is inundated by 3.1 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 3.6 feet if the starting reservoir elevation is 745 feet.

For the September 1993 event and the July 2007 event, the bridge is unusable and inundated by 3.7 feet of water and 3.0 feet of water respectively for a starting elevation of 742 feet; the depth does not increase for either event if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.3.4 Bernice State Park (ID 167)

Bernice State Park is initially unusable and is inundated by 2.4 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 2.9 feet if the starting reservoir elevation is 745 feet. Inundation from the December 2015 event is displayed in **Figure 8**.

Figure 8. December 2015 event inundation at Bernice State Park (ID 167).

For the September 1993 event and the July 2007 event, the grounds are inundated by 3.0 feet of water and 2.3 feet of water respectively for a starting elevation of 742 feet; the depths increase by 0.0 feet and 0.1 feet respectively if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.3.5 Cherokee Seaplane Base (ID 175)

Cherokee Seaplane Base is initially inundated by 3.0 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 3.5 feet if the starting reservoir elevation is 745 feet. Inundation from the December 2015 event is displayed in **Figure 9**.

Figure 9. December 2015 event inundation at Cherokee Seaplane Base (ID 175).

For the September 1993 event and the July 2007 event, the base is inundated by 3.6 feet of water and 2.9 feet of water respectively if the starting elevation is 742 feet; the depths increase by 0.0 feet and 0.1

feet respectively if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.3.6 Wolf Creek Park (ID 181)

Wolf Creek Park is initially inundated by 5.1 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 5.6 feet if the starting reservoir elevation is 745 feet. Inundation from the December 2015 event is displayed in **Figure 10**.

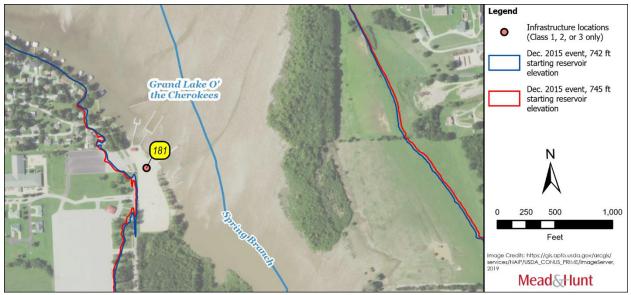


Figure 10. December 2015 event inundation at Wolf Creek Park (ID 181).

For the September 1993 event and the July 2007 event, the base is inundated by 5.7 feet of water and 5.0 feet of water respectively for a starting elevation of 742 feet; the depth does not increase for either event if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

6.3.7 Grove Springs Park (ID 185)

Grove Springs Park is initially inundated by 5.1 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth increases to 5.6 feet if the starting reservoir elevation is 745 feet. Inundation from the December 2015 event is displayed in **Figure 11**.

For the September 1993 event and the July 2007 event the park is inundated by 5.6 feet of water and 4.9 feet of water respectively for a starting elevation of 742 feet; the depths increase by 0.0 feet and 0.1 feet respectively if the starting reservoir elevation is 745 feet. For all three events, the initial inundation means that any increased depth resulting from a starting reservoir elevation of 745 feet does not result in any additional loss of infrastructure use at this location.

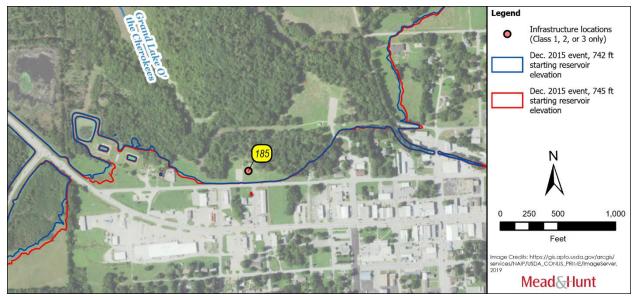


Figure 11. December 2015 event inundation at Grove Springs Park (ID 185).

6.3.8 Bacon's Heliport (ID 206)

Bacon's Heliport is a floating structure. However, if it were not a floating structure it would be initially inundated by 33.3 feet of water for the December 2015 event if the starting reservoir elevation is 742 feet. Inundation depth would increase to 33.8 feet if the starting reservoir elevation is 745 feet. Inundation from the December 2015 event is displayed in **Figure 12**.

For the September 1993 event and the July 2007 event, the depth would be 33.9 feet of water and 33.2 feet of water respectively for a starting elevation of 742 feet; the depths would increase by 0.0 and 0.1 feet respectively if the starting reservoir elevation is 745 feet. If the heliport was not a floating structure, the initial inundation would mean that any increased depth resulting from a starting reservoir elevation of 745 feet would not result in any additional loss of infrastructure use at this location.

Figure 12. December 2015 event inundation at Bacon's Heliport (ID 206).

7. Conclusions

Only 6% of the infrastructure locations studied experience an appreciable increase in maximum inundation depth due to a starting reservoir elevation increase from 742 feet to 745 feet. All appreciable increases in maximum inundation depth occur during high-flow conditions when the USACE controls the flood control operations under the Flood Control Act of 1944, except when the time of maximum inundation depth is solely a function of inflow event arrival time and not reservoir elevation. Therefore, no additional adverse impacts exist due to Project operation.

8. References

- 116th Congress. (2019). S. 1790 National Defense Authorization Act for Fiscal Year 2020. Public Law No. 116-92.
- Department of Homeland Security. (2021, March 12). *Science and Technology.* Retrieved from Critical Infrastructure: https://www.dhs.gov/science-and-technology/critical-infrastructure
- Esri. (2021, July 12). *ArcMap Documentation*. Retrieved from ArcGIS Desktop: https://desktop.arcgis.com/en/arcmap/
- Federal Emergency Management Agency. (2020, July 7). *Reports & Data Glossary.* Retrieved from Critical Facility: https://www.fema.gov/glossary/critical-facility
- Federal Energy Regulatory Commission. (2018). Study Plan Determination for the Pensacola Hydroelectric Project.
- Hunter, S. L., Trevisan, A. R., Villa, J., & Smith, K. A. (2020). *Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019.* Denver: USGS.
- Mead & Hunt. (2021). H&H Modeling Study: Upstream Hydraulic Model.
- Oklahoma Geographic Information Council. (2021, July 12). *Oklahoma Digital Data Online*. Retrieved from http://okmaps.onenet.net/digital_data.htm
- U.S. Department of Agriculture. (2021, July 12). *NAIP*. Retrieved from ArcGIS REST Services Directory: https://gis.apfo.usda.gov/arcgis/rest/services

APPENDIX A:

SAMPLE EMAIL TO LOCAL EMERGENCY MANAGEMENT AGENCIES

Brauna Hartzell

From:	Jesse Piotrowski
Sent:	Thursday, June 18, 2020 3:44 PM
То:	tanderson@miamiokla.net
Cc:	Shawn Puzen
Subject:	Grand Lake Infrastructure Study
Categories:	Important, Filed by Newforma

Mr. Anderson,

Mead & Hunt is performing a study at the direction of the Federal Energy Regulatory Commission (FERC) in support of the Grand River Dam Authority's intent to relicense the Pensacola Hydroelectric Project. The study is an effort to identify if hydrologic events could potentially have an effect on the frequency or depth of flooding for critical infrastructure such as:

- 1. Bridges and roads
- 2. Structures (fire stations, hospitals, substations, schools, wastewater treatment plants, etc.)
- 3. Public amenities (e.g. parks)

We have already compiled publicly available data sources such as shelters, airports, bridges, churches, fire stations, hospitals, law enforcement facilities, parks, power plants, substations, schools, wastewater treatment facilities, and water treatment facilities.

We are respectfully requesting your assistance in helping us identify any additional critical infrastructure that will not be included in the above datasets that could be affected by Pensacola Dam operations. To help you answer our question above, please answer the following questions to yourself:

- 1. Do you maintain a list of infrastructure that could potentially be affected by Pensacola Dam operations?
- 2. Do you have an emergency response plan?
- 3. Do you have a list of critical road intersections or road segments that are necessary for emergency response?

Answering the above questions may help you identify additional critical information that could assist with the study.

We greatly appreciate your assistance in this matter. If you would like, we can set up a teleconference to discuss our request. Please direct all responses to <u>jesse.piotrowski@meadhunt.com</u>. We would like to complete the identification of critical infrastructure by July 20, 2020.

Thank you in advance for your time and effort, Jesse Piotrowski

JESSE PIOTROWSKI, PE, CFM ENGINEER, WATER Mead & Hunt Direct: 608-443-0434 | Transfer Files meadhunt.com | LinkedIn | Twitter | Facebook | Instagram

120 YEARS OF SHAPING THE FUTURE

APPENDIX B: LIST OF EMERGENCY MANAGEMENT AGENCIES CONTACTED

	, 0	t Directory					
			Ottawa				
Jurisdiction	Director	Address	City	St	ZIP	W-Phone	Email
Miami Emergency Mgmt	Thomas Anderson	129 5th Ave NW	Miami	ОК	74354	918-541-2302	tanderson@miamiokla.net
Ottawa County Emergency Mgmt	Chad Holcomb	123 East Central Suite 1	Miami	ок	74354	918-961-1676	ottawacountyem@gmail.com
Quapaw Tribe	Jeff Reeves	P.O. Box 200	Quapaw	ОК	74344	918-675-4200	picherchief1@yahoo.com
	Randy Jackson					918-533-4359	jjackson@quapawnation.com
Wyandotte Emergency Mgmt	Leon Crow	P.O. Box 240	Wyandotte	ОК	74370	918-542-1853	leoncrow@yahoo.com
			Delaware				
Jurisdiction	Director	Address	City	St	ZIP	W-Phone	Email
Delaware County Emergency Mgmt	Travis Beesley	P.O. Box 309	Jay	ок	74342	918-353-2041	delawarecountyem@yahoo.com
	Frank Close	104 West 3rd Street	Grove	ОК	74344	918-787-4357	fclose@cityofgroveok.gov
Grove Emergency Management	Main line (City Hall)					918-786-6107	
Grove Emergency Management	Calvin Igney					918-290-1975 (cell)	cigney@cityofgroveok.gov
	Russ Schmidt (GIS)					918-964-3002 (cell)	rschmidt@cityofgroveok.gov
Seneca Cayuga Nation Emergency	Chris Arnold	P.O. Box 453220	Grove	ОК	74345	918-787-9272	carnold@sctribe.com
			Craig County	·			
Jurisdiction	Director	Address	City	St	ZIP	W-Phone	Email
Craig Co Emergency Mgmt	Morris Bluejacket	210 W Delaware Suite 1	Vinita	ОК	74301	918-323-0055	craigco.em1@gmail.com
Vinita Emergency Mgmt	Morris Bluejacket	210 W Delaware Suite 1	Vinita	ОК	74301	918-323-0055	craigco.em1@gmail.com
			Mayes Count	y			
Jurisdiction	Director	Address	City	St	ZIP	W-Phone	Email
Mayes County Emergency Mgmt	Johnny Janzen	1 Court PI Suite 140	Pryor	ОК	74361	918-825-4650	mayescountyem@yahoo.com
Pryor Emergency Mgmt	Johnny Janzen	12 North Rowe Street	Pryor	ОК	74361	918-825-4650	mayescountyem@yahoo.com

GRDA Contact List			
Agency		Phone	Email
Mayes Emergency Service Trust Authority (MESTA)		918-825-1155	info@mestaems.org
		800-800-2481 (24-hours)	
Oklahoma Department of Civil Emergency Management (OCEM)		405-521-2481 (main)	
		405-833-3159 (Allison)	allison.whitsitt@oem.ok.gov
State of Oklahoma Risk Management		405-521-4999 (main)	
Gene Lidyard, Administrator			
Janet Morrow		405-521-6051	
U.S. Army Corps of Engineers (USACE) Tulsa Office: Kerri Parks Stark		918-669-7431	kerri.stark@usace.army.mil

APPENDIX C: SAMPLE CERTIFIED LETTER

November 25, 2020

Chief Nelson Harjo Alabama-Quassarte Tribal Town PO Box 187 Wetumka, OK 74883

Subject: Grand Lake Infrastructure Study

Dear Chief Nelson Harjo:

Mead & Hunt is performing a study at the direction of the Federal Energy Regulatory Commission (FERC) in support of the Grand River Dam Authority's intent to relicense the Pensacola Hydroelectric Project. The study is an effort to identify if hydrologic events could potentially have an effect on the frequency or depth of flooding for critical infrastructure such as:

- 1. Bridges and roads
- 2. Structures (fire stations, hospitals, substations, schools, wastewater treatment plants, etc.)
- 3. Public amenities (e.g. parks)

We have already compiled publicly available data sources such as shelters, airports, bridges, churches, fire stations, hospitals, law enforcement facilities, parks, power plants, substations, schools, wastewater treatment facilities, and water treatment facilities.

We are respectfully requesting your assistance in helping us identify any additional critical infrastructure that may not be available in publicly available data sources, but which could be affected by Pensacola Dam operations. To help you consider whether you may be aware of any such critical infrastructure, please consider the following questions:

- 1. Do you maintain a list of infrastructure that could potentially be affected by Pensacola Dam operations?
- 2. Do you have an emergency response plan?
- 3. Do you have a list of critical road intersections or road segments that are necessary for emergency response?

If you are aware of any critical infrastructure that could be affected by Pensacola Dam operations, please send a description of the infrastructure and locational information, so that we can include it in our study.

Chief Nelson Harjo November 25, 2020 Page 2

We greatly appreciate your assistance in this matter. If you would like, we can set up a teleconference to discuss our request. Please direct all responses to <u>shawn.puzen@meadhunt.com</u>. We would like to complete the identification of critical infrastructure by January 8, 2020.

Thank you in advance for your time and effort,

Sincerely,

MEAD & HUNT, Inc.

Shawn Puzen FERC Hydropower Relicensing and Compliance

APPENDIX D: MAILING LIST FOR CERTIFIED LETTERS

Organization	Name	Address	City	St	ZIP	Phone	Email
labama-Quassarte Tribal Town	Chief Nelson Harjo	PO Box 187	Wetumka	ОК	74883		
Apache Tribe of Oklahoma	Chairman Bobby Komardley	511 E Colorado	Anadarko	ок	73005		
Caddo Nation	Derek Hill	PO Box 487	Binger	ОК	73009		dhill@caddonation.org
	Chairman Tamara	20.0 407	Diaman	ок	73009		caddochair.cn@gmail.com
Caddo Nation of Oklahoma	Francis-Fourkiller	PO Box 487	Binger	UK	/3009		<u>caddochair.cn@gmaii.com</u>
Cherokee Nation	Chief Chuck Hoskins	PO Box 948	Tahlequah	ОК	74465		
Cherokee Nation	Elizabeth Toombs	PO Box 948	Tahlequah	ОК	74465		elizabeth-toombs@cherokee.org
Delaware Nation	Deborah Dotson	PO Box 825	Anadarko	ОК	73005		ddotson@delawarenation.com
Delaware Tribe of Indians	Chief Chester Brooks	170 NE Barbara	Bartlesville	ОК	74006		cbrooks@delawaretribe.org
Eastern Shawnee Tribe of Oklahoma	Chief Glenna J. Wallace	70500 E 128 Road	Wyandotte	ок	74370		gjwallace@estoo.net
Inter-Tribal Council Inc.		21 N S Eight Tribe Trail, Suite C	Miami	ОК	74354		
lowa Tribe of Oklahoma	Chairman Bobby Walkup	335588 E 750 Road	Perkins	ок	74059		
Jacobson Law Group (Counsel for Miami Nation)	Joe Halloran	180 East 5th Street, Suite 940	St. Paul	MN	55101		ihalloran@thejacobsonlawgroup.com
Kiowa Tribe Office of Historic Preservation	Kellie Lewis	PO Box 369	Carnegie	ок	73015		kellie@tribaladminservices.org
Little Traverse Bay Bands of Odawa Indians	Regina Gasco-Bentley	7500 Odawa Circle	Harbor Springs	мі	49740		
Miami Tribe of Oklahoma	Chief Douglas G. Lankford	PO Box 1326	Miami	ок	74354		dlankford@miamination.com
Modoc Tribe of Oklahoma	Chief Bill Follis	515 G Street SE	Miami	ОК	74354		modoctribe@cableone.net
Muscogee (Creek) Nation	Chief James Floyd	PO Box 580	Okmulgee	ОК	74447		jfloyd@mcn-nsn.gov
Osage Nation	Chief Geoffrey Standing Bear	627 Grandview Avenue	Pawhuska	ОК	74056		
Osage Nation Historic Preservation Office	James Munkres	627 Grandview Avenue	Pawhuska	ок	74056		jmunkres@osagenation-nsn.gov
Osage Nation Historic Preservation Office	Andrea Hunter	627 Grandview Avenue	Pawhuska	ок	74056		ahunter@osagenation-nsn.gov
Otoe-Missouria Tribe of Indians	Chairman John Shotton	8151 Hwy 177	Red Rock	ок	74651		jshotton@omtribe.org
Ottawa Tribe of Oklahoma	Chief Ethel Cook	PO Box 110	Miami	ОК	74354		cethel.oto@gmail.com
Ottawa Tribe of Oklahoma	Rhonda Hayworth	PO Box 110	Miami	ОК	74355		rhonda.oto@gmail.com
Peoria Tribe of Oklahoma	Chief Craig Harper	118 South Eight Tribes Trail	Miami	ОК	74354	918-540-2535	chiefharper@peoriatribe.com
Quapaw Tribe of Oklahoma	Chairman John Berrey	PO Box 765	Quapaw	ок	74363		
Quapaw Tribe of Oklahoma	Everett Bandy	PO Box 765	Quapaw	ОК	74363		ebandy@quapatribe.com
Sac and Fox Nation of Oklahoma	Chief Kay Rhoads	920963 S Hwy 99, Building A	Stroud	ОК	74079		
Seneca-Cayuga Nation	Chief William Fisher	PO Box 453220	Grove	ОК	74345-3220		wfisher@sctribe.com
Shawnee Tribe of Oklahoma	Chief Ron Sparkman	PO Box 189	Miami	ОК	74354		rondede1@gmail.com
	Office	29 S. Hwy 69A	Miami	ОК	74354	918-542-2441 x101	agnes@shawnee-tribe.com
Fonkawa Tribe of Oklahoma	President Russel Martin	1 Rush Buffalo Road	Tonkawa	ок	74653	580-628-2561	
United Keetoowah Band of Cherokees	Chief Joe Bunch	PO Box 746	Tahlequah	ок	74465		
Wichita and Affiliated Tribes	President Terri Parton	PO Box 729	Anadarko	ок	735005		terri.parton@wichitatribe.com
Wyandotte Nation	Norman Hildebrand, Jr.	64700 East Highway 60	Wyandotte	ок	74370		nhildebrand@wyandotte-nation.org
Wyandotte Tribe of Oklahoma	Chief Billy Friend	64700 East Highway 60	Wyandotte	ОК	74370		bfriend@wyandotte-nation.org

APPENDIX E: INFRASTRUCTURE MAPS

Note: This appendix is included as a separate set of PDF files.

APPENDIX F: TABULAR DATA SHEETS

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
1	A1	Bridge,Off-sys	783.9	n/a	n/a	n/a	n/a	n/a	n/a
2	A2	Church	790.3	n/a	n/a	n/a	n/a	n/a	n/a
3	A2	Bridge,Off-sys	784.1	n/a	n/a	n/a	n/a	n/a	n/a
4	A2	Bridge,Off-sys	773.5	2.3	2.3	5.1	5.1	0.3	0.3
5	A3	Bridge,Off-sys	783.7	n/a	n/a	n/a	n/a	n/a	n/a
6	A3	Bridge,Off-sys	784.9	n/a	n/a	n/a	n/a	n/a	n/a
7	A5	Bridge,Off-sys	770.8	19.7	19.7	n/a	n/a	14.9	14.9
8	A6	Bridge,Off-sys	798.0	7.4	7.4	n/a	n/a	2.5	2.5
9	A6	Bridge,Off-sys	788.8	15.2	15.2	n/a	n/a	9.8	9.8
10	A6	Bridge,Off-sys	797.1	8.3	8.3	n/a	n/a	3.4	3.4
11	A6	Bridge,Off-sys	782.4	21.2	21.2	n/a	n/a	15.7	15.7
12	A6	Bridge,Off-sys	781.3	22.0	22.0	n/a	n/a	16.6	16.6
13	A6	Park	777.1	23.2	23.2	n/a	n/a	17.8	17.8
14	A6	Bridge,Off-sys	801.9	n/a	n/a	n/a	n/a	n/a	n/a
15	A6	Bridge,Off-sys	796.0	n/a	n/a	n/a	n/a	n/a	n/a
16	A6	Bridge,Off-sys	780.5	11.2	11.2	n/a	n/a	5.9	5.9
17	B2	Bridge,Off-sys	767.6	5.0	5.0	9.1	9.1	1.3	1.3
18	B2	Bridge,Off-sys	766.9	5.5	5.5	9.8	9.8	2.1	2.1
19	B2	Bridge,Off-sys	771.8	n/a	n/a	4.5	4.5	n/a	n/a
20	B2	Bridge,Off-sys	787.1	n/a	n/a	n/a	n/a	n/a	n/a
21	B2	Bridge,Off-sys	782.7	n/a	n/a	n/a	n/a	n/a	n/a
22	B2	Bridge,Off-sys	786.2	n/a	n/a	n/a	n/a	n/a	n/a
23	B2	Bridge,On-sys	797.9	n/a	n/a	n/a	n/a	n/a	n/a
24	B2	Bridge,On-sys	791.2	n/a	n/a	n/a	n/a	n/a	n/a
25	B2	Bridge,On-sys	796.4	n/a	n/a	n/a	n/a	n/a	n/a
26	B2	Bridge,On-sys	780.8	n/a	n/a	n/a	n/a	n/a	n/a
27	B2	School	789.0	n/a	n/a	n/a	n/a	n/a	n/a
28	B2	Church	789.1	n/a	n/a	n/a	n/a	n/a	n/a
29	B3	Bridge,Off-sys	774.9	n/a	n/a	1.9	2.0	n/a	n/a
30	B3	Bridge,Off-sys	779.2	n/a	n/a	n/a	n/a	n/a	n/a
31	B3	Bridge,Off-sys	780.9	n/a	n/a	n/a	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
32	B3	Bridge,Off-sys	768.9	3.7	3.7	7.8	7.9	0.2	0.2
33	B3	Bridge,Off-sys	794.1	n/a	n/a	n/a	n/a	n/a	n/a
34	B3	Bridge,Off-sys	776.0	n/a	n/a	n/a	n/a	n/a	n/a
35	B3, B3-4	Church	781.1	n/a	n/a	n/a	n/a	n/a	n/a
36	B3	Bridge,Off-sys	765.4	5.3	5.4	10.1	10.2	n/a	n/a
37	B3	Bridge,On-sys	779.2	n/a	n/a	n/a	n/a	n/a	n/a
38	B3, B3-4	Bridge,On-sys	765.3	5.3	5.3	10.1	10.2	n/a	n/a
39	B4, B4-1	Park	790.4	n/a	n/a	n/a	n/a	n/a	n/a
40	B4, B4-1	Shelter - Evac Only	782.8	n/a	n/a	n/a	n/a	n/a	n/a
41	B4, B4-1	Church	789.8	n/a	n/a	n/a	n/a	n/a	n/a
42	B4, B4-1	Church	794.0	n/a	n/a	n/a	n/a	n/a	n/a
43	B4, B4-1	Bridge,Off-sys	783.0	n/a	n/a	n/a	n/a	n/a	n/a
44	B4, B4-1	Bridge,Off-sys	789.3	n/a	n/a	n/a	n/a	n/a	n/a
45	B4, B4-1	Church	789.1	n/a	n/a	n/a	n/a	n/a	n/a
46	B4, B4-1	School	782.1	n/a	n/a	n/a	n/a	n/a	n/a
47	B4, B4-3	Park	771.4	2.6	2.6	1.5	1.6	0.6	0.6
48	B4, B4-3	Bridge,On-sys	780.1	n/a	n/a	n/a	n/a	n/a	n/a
49	B4, B4-3	Bridge,Off-sys	770.8	1.9	1.9	2.2	2.3	0.1	0.1
50	B4, B4-3	Bridge,Off-sys	777.2	n/a	n/a	n/a	n/a	n/a	n/a
51	B4, B4-3	Fire Station	789.5	n/a	n/a	n/a	n/a	n/a	n/a
52	B4, B4-4	Church	789.0	n/a	n/a	n/a	n/a	n/a	n/a
53	B4, B4-3	Church	779.9	n/a	n/a	n/a	n/a	n/a	n/a
54	B4, B4-4	Bridge,Off-sys	784.8	n/a	n/a	n/a	n/a	n/a	n/a
55	B4, B4-4	Bridge,Off-sys	786.3	n/a	n/a	n/a	n/a	n/a	n/a
56	B4, B4-3	Cell Tower	771.0	n/a	n/a	2.0	2.1	n/a	n/a
57	B4, B4-3	Bridge,Off-sys	766.2	1.3	1.5	6.7	6.8	n/a	n/a
58	B4, B4-3	Cell Tower	788.2	n/a	n/a	n/a	n/a	n/a	n/a
59	B4, B4-3	Church	780.0	n/a	n/a	n/a	n/a	n/a	n/a
60	B4, B4-3	Church	795.1	n/a	n/a	n/a	n/a	n/a	n/a
61	B4, B4-3	School	797.4	n/a	n/a	n/a	n/a	n/a	n/a
62	B4, B4-3	Church	797.0	n/a	n/a	n/a	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
63	B4, B4-3	Church	793.8	n/a	n/a	n/a	n/a	n/a	n/a
64	B4, B4-3	School	769.7	n/a	n/a	3.2	3.3	n/a	n/a
65	B4, B4-3	Law Enforcement	776.0	n/a	n/a	n/a	n/a	n/a	n/a
66	B4, B4-3	School	782.3	n/a	n/a	n/a	n/a	n/a	n/a
67	B4, B4-3	Church	787.3	n/a	n/a	n/a	n/a	n/a	n/a
68	B4, B4-3	Church	794.1	n/a	n/a	n/a	n/a	n/a	n/a
70	B4, B4-3	Church	785.9	n/a	n/a	n/a	n/a	n/a	n/a
71	B4, B4-3	School	785.9	n/a	n/a	n/a	n/a	n/a	n/a
72	B4, B4-3	Church	788.4	n/a	n/a	n/a	n/a	n/a	n/a
73	B4, B4-3	Bridge,Off-sys	772.5	n/a	n/a	0.5	0.6	n/a	n/a
74	B4, B4-3	Church	786.3	n/a	n/a	n/a	n/a	n/a	n/a
75	B4, B4-3	Church	792.3	n/a	n/a	n/a	n/a	n/a	n/a
76	B4, B4-3	Shelter - Evac Only	795.5	n/a	n/a	n/a	n/a	n/a	n/a
77	B4, B4-4	School	789.2	n/a	n/a	n/a	n/a	n/a	n/a
78	B4, B4-3	Church	795.0	n/a	n/a	n/a	n/a	n/a	n/a
79	B4, B4-3	Church	793.0	n/a	n/a	n/a	n/a	n/a	n/a
80	B4, B4-3	Hospital	789.5	n/a	n/a	n/a	n/a	n/a	n/a
81	B4, B4-3	Hospital	790.2	n/a	n/a	n/a	n/a	n/a	n/a
82	B4, B4-3	Church	792.9	n/a	n/a	n/a	n/a	n/a	n/a
83	B4, B4-4	Law Enforcement	784.3	n/a	n/a	n/a	n/a	n/a	n/a
84	B4, B4-3	Church	775.3	n/a	n/a	n/a	n/a	n/a	n/a
85	B4, B4-3	Airport	785.8	n/a	n/a	n/a	n/a	n/a	n/a
86	B4, B4-4	Bridge,On-sys	767.0	n/a	n/a	4.8	4.9	n/a	n/a
87	B4, B4-4	Bridge,On-sys	809.6	n/a	n/a	n/a	n/a	n/a	n/a
88	B4, B4-3	Bridge,On-sys	765.4	2.2	2.3	7.6	7.7	n/a	n/a
89	B4, B4-3	Shelter - Evac Only	782.0	n/a	n/a	n/a	n/a	n/a	n/a
90	B4, B4-3	Church	781.2	n/a	n/a	n/a	n/a	n/a	n/a
91	B4, B4-3	Bridge,On-sys	783.3	n/a	n/a	n/a	n/a	n/a	n/a
92	B4, B4-3	School	781.6	n/a	n/a	n/a	n/a	n/a	n/a
93	B4, B4-3	School	770.9	n/a	n/a	2.8	2.9	n/a	n/a
94	B4, B4-3	Park	767.2	0.3	0.5	5.8	5.9	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft <i>,</i> NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
95	B4, B4-3	Substation	775.4	n/a	n/a	n/a	n/a	n/a	n/a
96	B4, B4-3	Substation	778.5	n/a	n/a	n/a	n/a	n/a	n/a
97	B4, B4-4	Bridge,Off-sys	756.6	10.1	10.3	15.1	15.2	5.2	5.4
98	B4, B4-3	Fire Station	772.6	n/a	n/a	1.6	1.7	n/a	n/a
99	B4, B4-3	Bridge,RR	772.7	n/a	n/a	1.6	1.7	n/a	n/a
100	B4, B4-4	Bridge,On-sys	802.6	n/a	n/a	n/a	n/a	n/a	n/a
101	B4, B4-3	Bridge,On-sys	777.5	n/a	n/a	n/a	n/a	n/a	n/a
102	B4, B4-3	Park	761.8	7.2	7.3	12.3	12.3	1.4	1.5
103	B4, B4-3	Park	755.2	13.8	13.9	18.9	19.0	8.0	8.2
104	B4, B4-3	Wastewater Treatment	774.6	n/a	n/a	n/a	n/a	n/a	n/a
105	B4, B4-3	Park	760.6	8.4	8.5	13.5	13.6	2.6	2.7
106	B5	Bridge,On-sys	777.4	n/a	n/a	n/a	n/a	n/a	n/a
107	B5	Bridge,On-sys	807.2	n/a	n/a	n/a	n/a	n/a	n/a
108	B6	Bridge,On-sys	809.8	n/a	n/a	n/a	n/a	n/a	n/a
109	B6	Bridge,Off-sys	782.2	1.8	1.8	n/a	n/a	n/a	n/a
110	B6	Bridge,Off-sys	779.4	0.9	0.9	n/a	n/a	n/a	n/a
111	B6	Bridge,Off-sys	774.2	5.3	5.3	n/a	n/a	3.1	3.1
112	B6	Bridge,Off-sys	769.7	8.4	8.4	n/a	n/a	6.6	6.6
113	B6	Bridge,Off-sys	774.9	3.1	3.1	n/a	n/a	1.3	1.3
114	C2	Bridge,Off-sys	787.3	n/a	n/a	n/a	n/a	n/a	n/a
115	C3	Bridge,Off-sys	773.2	n/a	n/a	2.3	2.3	n/a	n/a
116	C3	Bridge,On-sys	810.4	n/a	n/a	n/a	n/a	n/a	n/a
117	C3	Bridge,Off-sys	764.3	6.2	6.3	11.0	11.1	0.1	0.2
118	C3	Bridge,Off-sys	779.5	n/a	n/a	n/a	n/a	n/a	n/a
119	C3	Bridge,On-sys	790.3	n/a	n/a	n/a	n/a	n/a	n/a
120	C3	Bridge,Off-sys	766.8	3.7	3.8	8.6	8.6	n/a	n/a
121	C3	Bridge,Off-sys	771.7	n/a	n/a	3.6	3.7	n/a	n/a
122	C3	Bridge,Off-sys	775.5	n/a	n/a	n/a	n/a	n/a	n/a
123	C3	Bridge,Off-sys	793.0	n/a	n/a	n/a	n/a	n/a	n/a
124	C4	Bridge,On-sys	785.8	n/a	n/a	n/a	n/a	n/a	n/a
125	C4, C4-1	Bridge,On-sys	811.6	n/a	n/a	n/a	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
126	C4	Bridge,Off-sys	773.7	n/a	n/a	n/a	n/a	n/a	n/a
127	C4	Bridge,Off-sys	747.7	15.0	15.1	17.9	18.3	12.4	12.7
128	C4	Bridge,Off-sys	776.9	n/a	n/a	n/a	n/a	n/a	n/a
129	C4	Bridge,On-sys	766.4	n/a	n/a	n/a	n/a	n/a	n/a
130	C4	Bridge,Off-sys	772.0	n/a	n/a	n/a	n/a	n/a	n/a
131	C4	Church	794.7	n/a	n/a	n/a	n/a	n/a	n/a
132	C4	Bridge,Off-sys	773.4	n/a	n/a	n/a	n/a	n/a	n/a
133	C4	Bridge,Off-sys	776.1	n/a	n/a	n/a	n/a	n/a	n/a
134	C4	Bridge,Off-sys	770.8	n/a	n/a	n/a	n/a	n/a	n/a
135	C5	Bridge,Off-sys	781.5	n/a	n/a	n/a	n/a	n/a	n/a
136	C5	Park	807.9	n/a	n/a	n/a	n/a	n/a	n/a
137	C5	Bridge,Off-sys	767.4	n/a	n/a	n/a	n/a	n/a	n/a
138	C5	Bridge,On-sys	766.1	n/a	n/a	n/a	n/a	n/a	n/a
139	C5	Park	749.5	12.4	12.5	7.8	8.5	10.0	10.4
140	C6	Bridge,Off-sys	754.9	10.5	10.6	2.4	3.1	6.3	6.5
141	C6	Law Enforcement	774.2	n/a	n/a	n/a	n/a	n/a	n/a
142	C6	Bridge,On-sys	779.2	n/a	n/a	n/a	n/a	n/a	n/a
143	C6	Bridge,On-sys	764.1	n/a	n/a	n/a	n/a	n/a	n/a
144	C6	Bridge,On-sys	796.1	n/a	n/a	n/a	n/a	n/a	n/a
145	C6	School	785.7	n/a	n/a	n/a	n/a	n/a	n/a
146	C6	Bridge,Off-sys	764.6	n/a	n/a	n/a	n/a	n/a	n/a
147	C6	Bridge,On-sys	766.1	n/a	n/a	n/a	n/a	n/a	n/a
148	C6	Fire Station	762.7	n/a	n/a	n/a	n/a	n/a	n/a
149	C6	Church	760.9	n/a	n/a	n/a	n/a	n/a	n/a
150	C6	School	756.0	2.2	2.3	0.6	1.0	2.1	2.4
151	C6	School	760.6	n/a	n/a	n/a	n/a	n/a	n/a
152	C6	Shelter - Both	762.1	n/a	n/a	n/a	n/a	n/a	n/a
153	C6	School	760.6	n/a	n/a	n/a	n/a	n/a	n/a
154	C6	Bridge,RR	760.0	n/a	n/a	n/a	n/a	n/a	n/a
155	C6	Wastewater Treatment	778.1	n/a	n/a	n/a	n/a	n/a	n/a
156	D5	Bridge,On-sys	775.6	n/a	n/a	n/a	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
157	D5	Bridge,Off-sys	770.7	n/a	n/a	n/a	n/a	n/a	n/a
158	D5	Bridge,Off-sys	764.8	n/a	n/a	n/a	n/a	n/a	n/a
159	D6	Bridge,On-sys	775.3	n/a	n/a	n/a	n/a	n/a	n/a
160	D6	Bridge,On-sys	771.5	n/a	n/a	n/a	n/a	n/a	n/a
161	D6	Bridge,On-sys	774.8	n/a	n/a	n/a	n/a	n/a	n/a
162	D6	Bridge,On-sys	764.2	n/a	n/a	n/a	n/a	n/a	n/a
163	D6	Bridge,On-sys	765.2	n/a	n/a	n/a	n/a	n/a	n/a
164	D6	Bridge,On-sys	769.1	n/a	n/a	n/a	n/a	n/a	n/a
165	E3	Bridge,On-sys	774.2	n/a	n/a	n/a	n/a	n/a	n/a
166	E3	Bridge,Off-sys	752.3	3.7	3.7	3.0	3.0	3.1	3.6
167	E3	Park	753.0	3.0	3.0	2.3	2.4	2.4	2.9
168	E5	Fire Station	771.8	n/a	n/a	n/a	n/a	n/a	n/a
169	E5	Bridge,Off-sys	758.0	n/a	n/a	n/a	n/a	n/a	n/a
170	E5	Substation	767.6	n/a	n/a	n/a	n/a	n/a	n/a
171	E5	Bridge,On-sys	805.4	n/a	n/a	n/a	n/a	n/a	n/a
172	E5	Church	767.2	n/a	n/a	n/a	n/a	n/a	n/a
173	E6	Bridge,On-sys	773.2	n/a	n/a	n/a	n/a	n/a	n/a
174	F3	Bridge,On-sys	757.4	n/a	n/a	n/a	n/a	n/a	n/a
175	F3	Airport	752.4	3.6	3.6	2.9	3.0	3.0	3.5
176	F3	Fire Station	767.1	n/a	n/a	n/a	n/a	n/a	n/a
177	F3	Airport	771.5	n/a	n/a	n/a	n/a	n/a	n/a
178	F4	Airport	760.8	n/a	n/a	n/a	n/a	n/a	n/a
179	F5	Bridge,Off-sys	769.3	n/a	n/a	n/a	n/a	n/a	n/a
180	F5	Wastewater Treatment	799.5	n/a	n/a	n/a	n/a	n/a	n/a
181	F5	Park	750.4	5.7	5.6	5.0	5.0	5.1	5.6
182	F5	Church	759.2	n/a	n/a	n/a	n/a	n/a	n/a
183	F5	Bridge,Off-sys	760.2	n/a	n/a	n/a	n/a	n/a	n/a
184	F5	Church	761.1	n/a	n/a	n/a	n/a	n/a	n/a
185	F5	Park	750.4	5.6	5.6	4.9	5.0	5.1	5.6
186	F5	Fire Station	762.1	n/a	n/a	n/a	n/a	n/a	n/a
187	F5	Bridge,Off-sys	762.0	n/a	n/a	n/a	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Se	pt. 1993 event	Depth (ft), Ju	ly 2007 event	Depth (ft), De	ecember 2015
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
188	F5	Church	760.8	n/a	n/a	n/a	n/a	n/a	n/a
189	F5	Church	776.1	n/a	n/a	n/a	n/a	n/a	n/a
190	F5	Law Enforcement	773.9	n/a	n/a	n/a	n/a	n/a	n/a
191	F5	Bridge,On-sys	767.4	n/a	n/a	n/a	n/a	n/a	n/a
192	F5	Shelter - Both	784.6	n/a	n/a	n/a	n/a	n/a	n/a
193	F5	Shelter - Both	837.2	n/a	n/a	n/a	n/a	n/a	n/a
194	F5	Water Treatment	772.4	n/a	n/a	n/a	n/a	n/a	n/a
195	F5	Bridge,On-sys	768.8	n/a	n/a	n/a	n/a	n/a	n/a
196	F5	Shelter - Evac Only	769.0	n/a	n/a	n/a	n/a	n/a	n/a
197	F5	Bridge,Off-sys	771.9	n/a	n/a	n/a	n/a	n/a	n/a
198	F5	Bridge,Off-sys	770.2	n/a	n/a	n/a	n/a	n/a	n/a
199	F5	Park	813.2	n/a	n/a	n/a	n/a	n/a	n/a
200	F5	Bridge,On-sys	770.7	n/a	n/a	n/a	n/a	n/a	n/a
201	G2	Bridge,Off-sys	758.9	n/a	n/a	n/a	n/a	n/a	n/a
202	G2	Bridge,Off-sys	768.0	n/a	n/a	n/a	n/a	n/a	n/a
203	G2	Bridge,On-sys	757.9	n/a	n/a	n/a	n/a	n/a	n/a
204	G2	Shelter - Evac Only	762.8	n/a	n/a	n/a	n/a	n/a	n/a
205	G3	Fire Station	799.5	n/a	n/a	n/a	n/a	n/a	n/a
206	G3	Airport	722.1	33.9	33.9	33.2	33.3	33.3	33.8
207	G4	Bridge,Off-sys	764.6	n/a	n/a	n/a	n/a	n/a	n/a
208	G4	Bridge,Off-sys	762.7	n/a	n/a	n/a	n/a	n/a	n/a
209	G4	Church	768.2	n/a	n/a	n/a	n/a	n/a	n/a
210	G5	Airport	916.1	n/a	n/a	n/a	n/a	n/a	n/a
211	G6	Bridge,Off-sys	758.7	n/a	n/a	n/a	n/a	n/a	n/a
212	H1	Park	807.2	n/a	n/a	n/a	n/a	n/a	n/a
213	H2	Airport	0.0	n/a	n/a	n/a	n/a	n/a	n/a
214	H2	Airport	772.1	n/a	n/a	n/a	n/a	n/a	n/a
215	H2	Park	768.4	n/a	n/a	n/a	n/a	n/a	n/a
216	H2	Bridge,On-sys	742.5	n/a	n/a	n/a	n/a	n/a	n/a
217	H2	Bridge,On-sys	742.5	n/a	n/a	n/a	n/a	n/a	n/a
218	H2	Fire Station	0.0	n/a	n/a	n/a	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DEPTH DATA SHEET

			Ground	Depth (ft), Sept. 1993 event		Depth (ft), July 2007 event		Depth (ft), December 2015	
			Elevation	742 ft PD	745 ft PD	742 ft PD	745 ft PD	742 ft PD	745 ft PD
Infrastructure ID	Map Panel	Location	(ft, NGVD29)	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL	starting WSEL
219	H2	Park	770.8	n/a	n/a	n/a	n/a	n/a	n/a
220	H2	Fire Station	787.6	n/a	n/a	n/a	n/a	n/a	n/a
221	H2	Law Enforcement	787.6	n/a	n/a	n/a	n/a	n/a	n/a
222	H2	Law Enforcement	800.4	n/a	n/a	n/a	n/a	n/a	n/a
223	H2	Bridge,On-sys	757.4	n/a	n/a	n/a	n/a	n/a	n/a
224	H2	Substation	765.7	n/a	n/a	n/a	n/a	n/a	n/a
225	H2	Power Plant	719.2	n/a	n/a	n/a	n/a	n/a	n/a
226	H2	Substation	784.7	n/a	n/a	n/a	n/a	n/a	n/a
227	H2	Substation	779.4	n/a	n/a	n/a	n/a	n/a	n/a
228	H4	Bridge,Off-sys	759.6	n/a	n/a	n/a	n/a	n/a	n/a

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
1	A1	Bridge,Off-sys	783.9	n/a	n/a	n/a
2	A2	Church	790.3	n/a	n/a	n/a
3	A2	Bridge,Off-sys	784.1	n/a	n/a	n/a
4	A2	Bridge,Off-sys	773.5	0.0	0.0	0.0
5	A3	Bridge,Off-sys	783.7	n/a	n/a	n/a
6	A3	Bridge,Off-sys	784.9	n/a	n/a	n/a
7	A5	Bridge,Off-sys	770.8	0.0	n/a	0.0
8	A6	Bridge,Off-sys	798.0	0.0	n/a	0.0
9	A6	Bridge,Off-sys	788.8	0.0	n/a	0.0
10	A6	Bridge,Off-sys	797.1	0.0	n/a	0.0
11	A6	Bridge,Off-sys	782.4	0.0	n/a	0.0
12	A6	Bridge,Off-sys	781.3	0.0	n/a	0.0
13	A6	Park	777.1	0.0	n/a	0.0
14	A6	Bridge,Off-sys	801.9	n/a	n/a	n/a
15	A6	Bridge,Off-sys	796.0	n/a	n/a	n/a
16	A6	Bridge,Off-sys	780.5	0.0	n/a	0.0
17	B2	Bridge,Off-sys	767.6	0.0	0.0	0.0
18	B2	Bridge,Off-sys	766.9	0.0	0.0	0.0
19	B2	Bridge,Off-sys	771.8	n/a	0.0	n/a
20	B2	Bridge,Off-sys	787.1	n/a	n/a	n/a
21	B2	Bridge,Off-sys	782.7	n/a	n/a	n/a
22	B2	Bridge,Off-sys	786.2	n/a	n/a	n/a
23	B2	Bridge,On-sys	797.9	n/a	n/a	n/a
24	B2	Bridge,On-sys	791.2	n/a	n/a	n/a
25	B2	Bridge,On-sys	796.4	n/a	n/a	n/a
26	B2	Bridge,On-sys	780.8	n/a	n/a	n/a
27	B2	School	789.0	n/a	n/a	n/a
28	B2	Church	789.1	n/a	n/a	n/a
29	B3	Bridge,Off-sys	774.9	n/a	0.1	n/a
30	B3	Bridge,Off-sys	779.2	n/a	n/a	n/a
31	B3	Bridge,Off-sys	780.9	n/a	n/a	n/a
32	B3	Bridge,Off-sys	768.9	0.0	0.1	0.0

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
33	B3	Bridge,Off-sys	794.1	n/a	n/a	n/a
34	B3	Bridge,Off-sys	776.0	n/a	n/a	n/a
35	B3, B3-4	Church	781.1	n/a	n/a	n/a
36	B3	Bridge,Off-sys	765.4	0.1	0.1	n/a
37	B3	Bridge,On-sys	779.2	n/a	n/a	n/a
38	B3, B3-4	Bridge,On-sys	765.3	0.0	0.1	n/a
39	B4, B4-1	Park	790.4	n/a	n/a	n/a
40	B4, B4-1	Shelter - Evac Only	782.8	n/a	n/a	n/a
41	B4, B4-1	Church	789.8	n/a	n/a	n/a
42	B4, B4-1	Church	794.0	n/a	n/a	n/a
43	B4, B4-1	Bridge,Off-sys	783.0	n/a	n/a	n/a
44	B4, B4-1	Bridge,Off-sys	789.3	n/a	n/a	n/a
45	B4, B4-1	Church	789.1	n/a	n/a	n/a
46	B4, B4-1	School	782.1	n/a	n/a	n/a
47	B4, B4-3	Park	771.4	0.0	0.1	0.0
48	B4, B4-3	Bridge,On-sys	780.1	n/a	n/a	n/a
49	B4, B4-3	Bridge,Off-sys	770.8	0.0	0.1	0.0
50	B4, B4-3	Bridge,Off-sys	777.2	n/a	n/a	n/a
51	B4, B4-3	Fire Station	789.5	n/a	n/a	n/a
52	B4, B4-4	Church	789.0	n/a	n/a	n/a
53	B4, B4-3	Church	779.9	n/a	n/a	n/a
54	B4, B4-4	Bridge,Off-sys	784.8	n/a	n/a	n/a
55	B4, B4-4	Bridge,Off-sys	786.3	n/a	n/a	n/a
56	B4, B4-3	Cell Tower	771.0	n/a	0.1	n/a
57	B4, B4-3	Bridge,Off-sys	766.2	0.2	0.1	n/a
58	B4, B4-3	Cell Tower	788.2	n/a	n/a	n/a
59	B4, B4-3	Church	780.0	n/a	n/a	n/a
60	B4, B4-3	Church	795.1	n/a	n/a	n/a
61	B4, B4-3	School	797.4	n/a	n/a	n/a
62	B4, B4-3	Church	797.0	n/a	n/a	n/a
63	B4, B4-3	Church	793.8	n/a	n/a	n/a
64	B4, B4-3	School	769.7	n/a	0.1	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
65	B4, B4-3	Law Enforcement	776.0	n/a	n/a	n/a
66	B4, B4-3	School	782.3	n/a	n/a	n/a
67	B4, B4-3	Church	787.3	n/a	n/a	n/a
68	B4, B4-3	Church	794.1	n/a	n/a	n/a
70	B4, B4-3	Church	785.9	n/a	n/a	n/a
71	B4, B4-3	School	785.9	n/a	n/a	n/a
72	B4, B4-3	Church	788.4	n/a	n/a	n/a
73	B4, B4-3	Bridge,Off-sys	772.5	n/a	0.1	n/a
74	B4, B4-3	Church	786.3	n/a	n/a	n/a
75	B4, B4-3	Church	792.3	n/a	n/a	n/a
76	B4, B4-3	Shelter - Evac Only	795.5	n/a	n/a	n/a
77	B4, B4-4	School	789.2	n/a	n/a	n/a
78	B4, B4-3	Church	795.0	n/a	n/a	n/a
79	B4, B4-3	Church	793.0	n/a	n/a	n/a
80	B4, B4-3	Hospital	789.5	n/a	n/a	n/a
81	B4, B4-3	Hospital	790.2	n/a	n/a	n/a
82	B4, B4-3	Church	792.9	n/a	n/a	n/a
83	B4, B4-4	Law Enforcement	784.3	n/a	n/a	n/a
84	B4, B4-3	Church	775.3	n/a	n/a	n/a
85	B4, B4-3	Airport	785.8	n/a	n/a	n/a
86	B4, B4-4	Bridge,On-sys	767.0	n/a	0.1	n/a
87	B4, B4-4	Bridge,On-sys	809.6	n/a	n/a	n/a
88	B4, B4-3	Bridge,On-sys	765.4	0.1	0.1	n/a
89	B4, B4-3	Shelter - Evac Only	782.0	n/a	n/a	n/a
90	B4, B4-3	Church	781.2	n/a	n/a	n/a
91	B4, B4-3	Bridge,On-sys	783.3	n/a	n/a	n/a
92	B4, B4-3	School	781.6	n/a	n/a	n/a
93	B4, B4-3	School	770.9	n/a	0.1	n/a
94	B4, B4-3	Park	767.2	0.2	0.1	n/a
95	B4, B4-3	Substation	775.4	n/a	n/a	n/a
96	B4, B4-3	Substation	778.5	n/a	n/a	n/a
97	B4, B4-4	Bridge,Off-sys	756.6	0.2	0.1	0.2

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
98	B4, B4-3	Fire Station	772.6	n/a	0.1	n/a
99	B4, B4-3	Bridge,RR	772.7	n/a	0.1	n/a
100	B4, B4-4	Bridge,On-sys	802.6	n/a	n/a	n/a
101	B4, B4-3	Bridge,On-sys	777.5	n/a	n/a	n/a
102	B4, B4-3	Park	761.8	0.1	0.0	0.1
103	B4, B4-3	Park	755.2	0.1	0.1	0.2
104	B4, B4-3	Wastewater Treatment	774.6	n/a	n/a	n/a
105	B4, B4-3	Park	760.6	0.1	0.1	0.1
106	B5	Bridge,On-sys	777.4	n/a	n/a	n/a
107	B5	Bridge,On-sys	807.2	n/a	n/a	n/a
108	B6	Bridge,On-sys	809.8	n/a	n/a	n/a
109	B6	Bridge,Off-sys	782.2	0.0	n/a	n/a
110	B6	Bridge,Off-sys	779.4	0.0	n/a	n/a
111	B6	Bridge,Off-sys	774.2	0.0	n/a	0.0
112	B6	Bridge,Off-sys	769.7	0.0	n/a	0.0
113	B6	Bridge,Off-sys	774.9	0.0	n/a	0.0
114	C2	Bridge,Off-sys	787.3	n/a	n/a	n/a
115	C3	Bridge,Off-sys	773.2	n/a	0.0	n/a
116	C3	Bridge,On-sys	810.4	n/a	n/a	n/a
117	C3	Bridge,Off-sys	764.3	0.1	0.1	0.1
118	C3	Bridge,Off-sys	779.5	n/a	n/a	n/a
119	C3	Bridge,On-sys	790.3	n/a	n/a	n/a
120	C3	Bridge,Off-sys	766.8	0.1	0.0	n/a
121	C3	Bridge,Off-sys	771.7	n/a	0.1	n/a
122	C3	Bridge,Off-sys	775.5	n/a	n/a	n/a
123	C3	Bridge,Off-sys	793.0	n/a	n/a	n/a
124	C4	Bridge,On-sys	785.8	n/a	n/a	n/a
125	C4, C4-1	Bridge,On-sys	811.6	n/a	n/a	n/a
126	C4	Bridge,Off-sys	773.7	n/a	n/a	n/a
127	C4	Bridge,Off-sys	747.7	0.1	0.4	0.3
128	C4	Bridge,Off-sys	776.9	n/a	n/a	n/a
129	C4	Bridge,On-sys	766.4	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
130	C4	Bridge,Off-sys	772.0	n/a	n/a	n/a
131	C4	Church	794.7	n/a	n/a	n/a
132	C4	Bridge,Off-sys	773.4	n/a	n/a	n/a
133	C4	Bridge,Off-sys	776.1	n/a	n/a	n/a
134	C4	Bridge,Off-sys	770.8	n/a	n/a	n/a
135	C5	Bridge,Off-sys	781.5	n/a	n/a	n/a
136	C5	Park	807.9	n/a	n/a	n/a
137	C5	Bridge,Off-sys	767.4	n/a	n/a	n/a
138	C5	Bridge,On-sys	766.1	n/a	n/a	n/a
139	C5	Park	749.5	0.1	0.7	0.4
140	C6	Bridge,Off-sys	754.9	0.1	0.7	0.2
141	C6	Law Enforcement	774.2	n/a	n/a	n/a
142	C6	Bridge,On-sys	779.2	n/a	n/a	n/a
143	C6	Bridge,On-sys	764.1	n/a	n/a	n/a
144	C6	Bridge,On-sys	796.1	n/a	n/a	n/a
145	C6	School	785.7	n/a	n/a	n/a
146	C6	Bridge,Off-sys	764.6	n/a	n/a	n/a
147	C6	Bridge,On-sys	766.1	n/a	n/a	n/a
148	C6	Fire Station	762.7	n/a	n/a	n/a
149	C6	Church	760.9	n/a	n/a	n/a
150	C6	School	756.0	0.1	0.4	0.3
151	C6	School	760.6	n/a	n/a	n/a
152	C6	Shelter - Both	762.1	n/a	n/a	n/a
153	C6	School	760.6	n/a	n/a	n/a
154	C6	Bridge,RR	760.0	n/a	n/a	n/a
155	C6	Wastewater Treatment	778.1	n/a	n/a	n/a
156	D5	Bridge,On-sys	775.6	n/a	n/a	n/a
157	D5	Bridge,Off-sys	770.7	n/a	n/a	n/a
158	D5	Bridge,Off-sys	764.8	n/a	n/a	n/a
159	D6	Bridge,On-sys	775.3	n/a	n/a	n/a
160	D6	Bridge,On-sys	771.5	n/a	n/a	n/a
161	D6	Bridge,On-sys	774.8	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
162	D6	Bridge, On-sys	764.2	n/a	n/a	n/a
163	D6	Bridge,On-sys	765.2	n/a	n/a	n/a
164	D6	Bridge,On-sys	769.1	n/a	n/a	n/a
165	E3	Bridge,On-sys	774.2	n/a	n/a	n/a
166	E3	Bridge,Off-sys	752.3	0.0	0.0	0.5
167	E3	Park	753.0	0.0	0.1	0.5
168	E5	Fire Station	771.8	n/a	n/a	n/a
169	E5	Bridge,Off-sys	758.0	n/a	n/a	n/a
170	E5	Substation	767.6	n/a	n/a	n/a
171	E5	Bridge,On-sys	805.4	n/a	n/a	n/a
172	E5	Church	767.2	n/a	n/a	n/a
173	E6	Bridge,On-sys	773.2	n/a	n/a	n/a
174	F3	Bridge,On-sys	757.4	n/a	n/a	n/a
175	F3	Airport	752.4	0.0	0.1	0.5
176	F3	Fire Station	767.1	n/a	n/a	n/a
177	F3	Airport	771.5	n/a	n/a	n/a
178	F4	Airport	760.8	n/a	n/a	n/a
179	F5	Bridge,Off-sys	769.3	n/a	n/a	n/a
180	F5	Wastewater Treatment	799.5	n/a	n/a	n/a
181	F5	Park	750.4	-0.1	0.0	0.5
182	F5	Church	759.2	n/a	n/a	n/a
183	F5	Bridge,Off-sys	760.2	n/a	n/a	n/a
184	F5	Church	761.1	n/a	n/a	n/a
185	F5	Park	750.4	0.0	0.1	0.5
186	F5	Fire Station	762.1	n/a	n/a	n/a
187	F5	Bridge,Off-sys	762.0	n/a	n/a	n/a
188	F5	Church	760.8	n/a	n/a	n/a
189	F5	Church	776.1	n/a	n/a	n/a
190	F5	Law Enforcement	773.9	n/a	n/a	n/a
191	F5	Bridge,On-sys	767.4	n/a	n/a	n/a
192	F5	Shelter - Both	784.6	n/a	n/a	n/a
193	F5	Shelter - Both	837.2	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
194	F5	Water Treatment	772.4	n/a	n/a	n/a
195	F5	Bridge,On-sys	768.8	n/a	n/a	n/a
196	F5	Shelter - Evac Only	769.0	n/a	n/a	n/a
197	F5	Bridge,Off-sys	771.9	n/a	n/a	n/a
198	F5	Bridge,Off-sys	770.2	n/a	n/a	n/a
199	F5	Park	813.2	n/a	n/a	n/a
200	F5	Bridge,On-sys	770.7	n/a	n/a	n/a
201	G2	Bridge,Off-sys	758.9	n/a	n/a	n/a
202	G2	Bridge,Off-sys	768.0	n/a	n/a	n/a
203	G2	Bridge,On-sys	757.9	n/a	n/a	n/a
204	G2	Shelter - Evac Only	762.8	n/a	n/a	n/a
205	G3	Fire Station	799.5	n/a	n/a	n/a
206	G3	Airport	722.1	0.0	0.1	0.5
207	G4	Bridge,Off-sys	764.6	n/a	n/a	n/a
208	G4	Bridge,Off-sys	762.7	n/a	n/a	n/a
209	G4	Church	768.2	n/a	n/a	n/a
210	G5	Airport	916.1	n/a	n/a	n/a
211	G6	Bridge,Off-sys	758.7	n/a	n/a	n/a
212	H1	Park	807.2	n/a	n/a	n/a
213	H2	Airport	0.0	n/a	n/a	n/a
214	H2	Airport	772.1	n/a	n/a	n/a
215	H2	Park	768.4	n/a	n/a	n/a
216	H2	Bridge,On-sys	742.5	n/a	n/a	n/a
217	H2	Bridge,On-sys	742.5	n/a	n/a	n/a
218	H2	Fire Station	0.0	n/a	n/a	n/a
219	H2	Park	770.8	n/a	n/a	n/a
220	H2	Fire Station	787.6	n/a	n/a	n/a
221	H2	Law Enforcement	787.6	n/a	n/a	n/a
222	H2	Law Enforcement	800.4	n/a	n/a	n/a
223	H2	Bridge,On-sys	757.4	n/a	n/a	n/a
224	H2	Substation	765.7	n/a	n/a	n/a
225	H2	Power Plant	719.2	n/a	n/a	n/a

Note that flow at each location is unique based its position in the watershed.

INFRASTRUCTURE DIFFERENCE IN DEPTH DATA SHEET

			Ground	Difference in depth (ft),	Difference in depth (ft),	Difference in depth (ft),
Infrastructure ID	Map Panel	Location	Elevation	September 1993 event	July 2007 event	December 2015 event
226	H2	Substation	784.7	n/a	n/a	n/a
227	H2	Substation	779.4	n/a	n/a	n/a
228	H4	Bridge,Off-sys	759.6	n/a	n/a	n/a